Chang-Chun Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565230/publications.pdf

Version: 2024-02-01

304602 345118 1,518 63 22 36 citations h-index g-index papers 67 67 67 1720 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nature Communications, 2016, 7, 11312.	5.8	167
2	Thiooligosaccharide Conjugate Vaccines Evoke Antibodies Specific for Native Antigens. Angewandte Chemie - International Edition, 2005, 44, 7725-7729.	7.2	88
3	A New Homobifunctionalp-Nitro Phenyl Ester Coupling Reagent for the Preparation of Neoglycoproteins. Organic Letters, 2004, 6, 4407-4410.	2.4	87
4	Genetically Encoded Fragment-Based Discovery of Glycopeptide Ligands for Carbohydrate-Binding Proteins. Journal of the American Chemical Society, 2015, 137, 5248-5251.	6.6	67
5	Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain, 2018, 141, 1094-1110.	3.7	67
6	Self-organizing systems based on amphiphilic cyclodextrin diesters. Journal of Physical Organic Chemistry, 1992, 5, 518-528.	0.9	57
7	Cyclodextrin liquid crystals: synthesis and self-organisation of amphiphilic thio- \hat{l}^2 -cyclodextrins. Journal of the Chemical Society Chemical Communications, 1993, , 438-440.	2.0	54
8	Concise and Efficient Synthesis of 2-Acetamido-2-deoxy- \hat{l}^2 - <scp>d</scp> -hexopyranosides of Diverse Aminosugars from 2-Acetamido-2-deoxy- \hat{l}^2 - <scp>d</scp> -glucose. Journal of Organic Chemistry, 2009, 74, 580-589.	1.7	54
9	A general, efficient and stereospecific route to sphingosine, sphinganines, phytosphingosines and their analogs. Organic and Biomolecular Chemistry, 2006, 4, 1140.	1.5	39
10	Synthesis of ganglioside epitopes for oligosaccharide specific immunoadsorption therapy of Guillian-Barré syndrome. Organic and Biomolecular Chemistry, 2004, 2, 1199-1212.	1.5	37
11	Multiple tritylation: a convenient route to polysubstituted derivatives of cyclomaltohexaose. Carbohydrate Research, 1992, 223, 287-291.	1.1	36
12	Diisobutylaluminum Hydride Mediated Regioselective Oâ€Desilylations: Access to Multisubstituted Cyclodextrins. Angewandte Chemie - International Edition, 2012, 51, 1548-1552.	7.2	35
13	Genetically encoded multivalent liquid glycan array displayed on M13 bacteriophage. Nature Chemical Biology, 2021, 17, 806-816.	3.9	33
14	Chemoenzymatic synthesis of GM3and GM2gangliosides containing a truncated ceramide functionalized for glycoconjugate synthesis and solid phase applications. Organic and Biomolecular Chemistry, 2006, 4, 142-154.	1.5	31
15	Synthesis and Complexation Properties of a Cyclodextrin-Derived Siderophore Analogue. Angewandte Chemie International Edition in English, 1992, 31, 1381-1383.	4.4	30
16	Targeting the Chondroitin Sulfate Proteoglycans: Evaluating Fluorinated Glucosamines and Xylosides in Screens Pertinent to Multiple Sclerosis. ACS Central Science, 2019, 5, 1223-1234.	5.3	29
17	The first selective per-tosylation of the secondary OH-2 of \hat{l}^2 -cyclodextrin. Tetrahedron Letters, 1991, 32, 3997-3998.	0.7	26
18	Controlled Synthesis of Linear \hat{l} ±-Cyclodextrin Oligomers Using Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Organic Letters, 2010, 12, 3096-3099.	2.4	26

#	Article	IF	CITATIONS
19	Multi-responsive self-assembled pyrene-appended \hat{l}^2 -cyclodextrin nanoaggregates: Discriminative and selective ratiometric detection of pirimicarb pesticide and trinitroaromatic explosives. Sensors and Actuators B: Chemical, 2019, 281, 229-238.	4.0	26
20	The use of chlorodimethylthexylsilane for protecting the hydroxyl groups in cyclomaltoheptaose (\hat{l}^2 -cyclodextrin). Carbohydrate Research, 1992, 224, 307-309.	1.1	25
21	DIBAL-H mediated triple and quadruple debenzylations of perbenzylated cyclodextrins. Organic and Biomolecular Chemistry, 2010, 8, 171-180.	1.5	24
22	Amphiphilic Cyclodextrin-Based Liquid Crystals for Proton Conduction. Journal of the American Chemical Society, 2019, 141, 9217-9224.	6.6	24
23	Unexpected regioselective debenzylation leading to modification of both rims of α-cyclodextrin. Tetrahedron Letters, 2009, 50, 4633-4636.	0.7	22
24	Versican promotes T helper 17 cytotoxic inflammation and impedes oligodendrocyte precursor cell remyelination. Nature Communications, 2022, 13, 2445.	5.8	22
25	First Per-6- <i>O</i> -tritylation of Cyclodextrins. Organic Letters, 2012, 14, 1612-1615.	2.4	20
26	Synthesis and properties of cyclo-α-1,4-manno-2,3-epoxides. Supramolecular Chemistry, 1992, 1, 11-14.	1.5	19
27	An efficient conversion of N-acetyl-d-glucosamine to N-acetyl-d-galactosamine and derivatives. Carbohydrate Research, 2010, 345, 2450-2457.	1.1	19
28	Investigation into the role of the hydrogen bonding network in cyclodextrin-based self-assembling mesophases. Journal of Materials Chemistry C, 2014, 2, 4928-4936.	2.7	19
29	A Scalable Approach to Obtaining Orthogonally Protected \hat{l}^2 - <scp>d</scp> -Idopyranosides. Journal of Organic Chemistry, 2012, 77, 6760-6772.	1.7	18
30	Total synthesis of LeA-LacNAc pentasaccharide as a ligand for Clostridium difficiletoxin A. Organic and Biomolecular Chemistry, 2010, 8, 128-136.	1.5	17
31	The role of multilayers in preventing the premature buckling of the pulmonary surfactant. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1372-1380.	1.4	16
32	The conformation of a tetratritylated \hat{l} ±-cyclodextrin with unusual proton NMR. Carbohydrate Research, 2009, 344, 808-814.	1.1	15
33	Total Synthesis of β- <scp>d</scp> - <i>iio</i> -Heptopyranosides Related to Capsular Polysaccharides of <i>Campylobacter jejuni</i> HS:4. Journal of Organic Chemistry, 2017, 82, 9662-9674.	1.7	14
34	Synthesis and comparison of mesomorphic behaviour of a cholesterol-based liquid crystal dimer and analogous monomers. Liquid Crystals, 2018, 45, 1164-1176.	0.9	14
35	Efficient and Versatile Modification of the Secondary Face of Cyclodextrins through Copper atalyzed Huisgen 1,3â€Dipolar Cycloaddition. European Journal of Organic Chemistry, 2011, 2011, 4853-4861.	1.2	13
36	Liquid crystalline lithium-ion electrolytes derived from biodegradable cyclodextrin. Journal of Materials Chemistry A, 2019, 7, 12201-12213.	5.2	13

3

#	Article	IF	CITATIONS
37	Bifunctional Pyrrolidin-2-one Terminated Manganese Oxide Nanoparticles for Combined Magnetic Resonance and Fluorescence Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13069-13078.	4.0	13
38	Formation, Spectroscopic Characterization, and Solution Stability of an [Fe4S4]2+ Cluster Derived from β-Cyclodextrin Dithiolate. Inorganic Chemistry, 2012, 51, 9883-9892.	1.9	12
39	A Family of Amphiphilic Cyclodextrin Liquid Crystals Governed by Dipole–Dipole Interactions. ChemPlusChem, 2017, 82, 423-432.	1.3	12
40	Probing a sialyltransferase's recognition domain to prepare α(2,8)-linked oligosialosides and analogs. Chemical Communications, 2009, , 4233.	2.2	10
41	Studies on the 6-homologation of \hat{I}^2 -D-idopyranosides. Carbohydrate Research, 2017, 445, 65-74.	1.1	10
42	Clustering of P ^K -trisaccharides on amphiphilic cyclodextrin reveals unprecedented affinity for the Shiga-like toxin Stx2. Chemical Communications, 2017, 53, 10528-10531.	2.2	10
43	Inverting substitution patterns on amphiphilic cyclodextrins induces unprecedented formation of hexagonal columnar superstructures. Journal of Materials Chemistry C, 2017, 5, 9247-9254.	2.7	10
44	Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1040-1049.	1.1	10
45	Synthesis of a Forssman antigen derivative for use in a conjugate vaccine. Carbohydrate Research, 2011, 346, 2650-2662.	1.1	9
46	Role of the 4,6-O-acetal in the regio- and stereoselective conversion of 2,3-di-O-sulfonyl-Î ² -d-galactopyranosides to d-idopyranosides. Carbohydrate Research, 2013, 376, 37-48.	1.1	9
47	Synthesis and Unprecedented Complexation Properties of β-Cyclodextrin-Based Ligand for Lanthanide lons. Inorganic Chemistry, 2018, 57, 8964-8977.	1.9	9
48	Evidence of cation-coordination involvement in directing the regioselective di-inversion reaction of vicinal di-sulfonate esters. Organic and Biomolecular Chemistry, 2013, 11, 1887.	1.5	8
49	DIBAL-H-mediated O-desilylation with highly sterically hindered cyclodextrin substrates. Tetrahedron, 2013, 69, 5227-5233.	1.0	8
50	Synthesis of modified Trichinella spiralis disaccharide epitopes and a comparison of their recognition by chemical mapping and saturation transfer difference NMR. Carbohydrate Research, 2014, 383, 1-13.	1.1	8
51	Controlled Acidâ€Mediated Regioselective <i>O</i> â€Desilylations for Multifunctionalization of Cyclodextrins. European Journal of Organic Chemistry, 2014, 2014, 5793-5805.	1.2	7
52	Efficient regioselective O3-monodesilylation by hydrochloric acid in cyclodextrins. Carbohydrate Research, 2015, 410, 36-46.	1.1	7
53	A mild acetolysis procedure for the regioselective removal of isopropylidene in di- O -isopropylidene-protected pyranoside systems. Carbohydrate Research, 2017, 445, 7-13.	1.1	7
54	A Distinct Hibiscus sabdariffa Extract Prevents Iron Neurotoxicity, a Driver of Multiple Sclerosis Pathology. Cells, 2022, 11, 440.	1.8	5

#	Article	IF	CITATIONS
55	Amphiphilic 6-S-alkyl-6-thiocyclodextrins: unimolecular micellar and reverse micellar behaviour. Journal of the Chemical Society Perkin Transactions II, 1998, , 1513-1516.	0.9	4
56	CST-Il's recognition domain for acceptor substrates in α-(2â†'8)-sialylations. Carbohydrate Research, 2011, 346, 1692-1704.	1.1	4
57	Synthesis of rationally designed tetrasaccharides for crystallographic and binding studies with <i>Clostridium difficile</i> toxins and unexpected partial N-methylations during catalytic hydrogenation of azides in methanol. Canadian Journal of Chemistry, 2016, 94, 961-968.	0.6	3
58	Supramolecular Liquid Crystals Based on Cyclodextrins. Environmental Chemistry for A Sustainable World, 2018, , 183-240.	0.3	3
59	An efficient and scalable synthesis of 2,4-di- <i>N</i> -acetyl- <scp>I</scp> -altrose (<scp>I</scp> -2,4-Alt-diNAc). RSC Advances, 2021, 11, 11583-11594.	1.7	2
60	Highly Efficient and Stereoselective Synthesis of 6,7â€Dideoxyâ€Î²â€≺scp>dâ€≺/scp> <i>ido</i> â€octopyranuronates. European Journal of Organic Chemistry, 20 2022, .	2 2 1,.2	2
61	Eliciting carbohydrate-specific immune response against sialosides: success and challenges. Future Medicinal Chemistry, 2011, 3, 519-534.	1.1	1
62	Cyanoethylation of cyclodextrin derivatives. Canadian Journal of Chemistry, 2016, 94, 436-443.	0.6	1
63	Glycoclusters and Glycodendrimers. , 2021, , 263-345.		0