
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human health risk–benefit assessment of fish and other seafood: a scoping review. Critical Reviews in Food Science and Nutrition, 2022, 62, 7479-7502.	5.4	24
2	Feasibility study Open MCRA. EFSA Supporting Publications, 2021, 18, 6515E.	0.3	2
3	Proposed prospective scenarios for cumulative risk assessment of pesticide residues. EFSA Supporting Publications, 2021, 18, 6811E.	0.3	4
4	A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles. International Journal of Hygiene and Environmental Health, 2021, 238, 113826.	2.1	17
5	Equivalence tests for safety assessment of genetically modified crops using plant composition data. Food and Chemical Toxicology, 2021, 156, 112517.	1.8	5
6	Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environment International, 2020, 134, 105267.	4.8	165
7	Methodology for health risk assessment of combined exposures to multiple chemicals. Food and Chemical Toxicology, 2020, 143, 111520.	1.8	36
8	A generic PBTK model implemented in the MCRA platform: Predictive performance and uses in risk assessment of chemicals. Food and Chemical Toxicology, 2020, 142, 111440.	1.8	12
9	The MCRA toolbox of models and data to support chemical mixture risk assessment. Food and Chemical Toxicology, 2020, 138, 111185.	1.8	26
10	A retain and refine approach to cumulative risk assessment. Food and Chemical Toxicology, 2020, 138, 111223.	1.8	10
11	Assessment of the combined nitrate and nitrite exposure from food and drinking water: application of uncertainty around the nitrate to nitrite conversion factor. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 568-582.	1.1	21
12	Use of omics analytical methods in the study of genetically modified maize varieties tested in 90â€ ⁻ days feeding trials. Food Chemistry, 2019, 292, 359-371.	4.2	13
13	Omics analyses of potato plant materials using an improved one-class classification tool to identify aberrant compositional profiles in risk assessment procedures. Food Chemistry, 2019, 292, 350-358.	4.2	12
14	Equivalence Testing Approaches in Genetically Modified Organism Risk Assessment. Journal of Agricultural and Food Chemistry, 2019, 67, 13506-13508.	2.4	7
15	Cumulative dietary exposure assessment of pesticides that have chronic effects on the thyroid using MCRA software. EFSA Supporting Publications, 2019, 16, 1707E.	0.3	10
16	Cumulative dietary exposure assessment of pesticides that have acute effects on the nervous system using MCRA software. EFSA Supporting Publications, 2019, 16, 1708E.	0.3	10
17	Equivalence analysis to support environmental safety assessment: Using nontarget organism count data from field trials with cisgenically modified potato. Ecology and Evolution, 2019, 9, 2863-2882.	0.8	4
18	Equivalence limit scaled differences for untargeted safety assessments: Comparative analyses to guard against unintended effects on the environment or human health of genetically modified maize. Food and Chemical Toxicology, 2019, 125, 540-548.	1.8	1

HILKO VAN DER VOET

#	Article	IF	CITATIONS
19	A probabilistic approach for risk-benefit assessment of food substitutions: A case study on substituting meat by fish. Food and Chemical Toxicology, 2019, 126, 79-96.	1.8	18
20	Lack of adverse effects in subchronic and chronic toxicity/carcinogenicity studies on the glyphosate-resistant genetically modified maize NK603 in Wistar Han RCC rats. Archives of Toxicology, 2019, 93, 1095-1139.	1.9	40
21	Selecting mixtures on the basis of dietary exposure and hazard data: application to pesticide exposure in the European population in relation to steatosis. International Journal of Hygiene and Environmental Health, 2019, 222, 291-306.	2.1	32
22	Safety Assessments and Multiplicity Adjustment: Comments on a Recent Paper. Journal of Agricultural and Food Chemistry, 2018, 66, 2194-2195.	2.4	2
23	Development and validation of IPM strategies for the cultivation of cisgenically modified late blight resistant potato. European Journal of Agronomy, 2018, 96, 146-155.	1.9	35
24	Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: the potential EuroMix contribution. Critical Reviews in Toxicology, 2018, 48, 796-814.	1.9	84
25	Probabilistic dietary risk assessment of triazole and dithiocarbamate fungicides for the Brazilian population. Food and Chemical Toxicology, 2018, 118, 317-327.	1.8	27
26	Proposal for a data model for probabilistic cumulative dietary exposure assessments of pesticides in line with the MCRA software. EFSA Supporting Publications, 2018, 15, 1375E.	0.3	3
27	Validation of accelerometer for measuring physical activity in free-living individuals. Baltic Journal of Health and Physical Activity, 2018, 10, 7-21.	0.2	2
28	Equivalence testing using existing reference data: An example with genetically modified and conventional crops in animal feeding studies. Food and Chemical Toxicology, 2017, 109, 472-485.	1.8	14
29	Variability of control data and relevance of observed group differences in five oral toxicity studies with genetically modified maize MON810 in rats. Archives of Toxicology, 2017, 91, 1977-2006.	1.9	20
30	A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data. BMC Medical Research Methodology, 2016, 16, 139.	1.4	5
31	Evaluation of a twoâ€part regression calibration to adjust for dietary exposure measurement error in the Cox proportional hazards model: A simulation study. Biometrical Journal, 2016, 58, 766-782.	0.6	9
32	Proposed criteria for the evaluation of the scientific quality of mandatory rat and mouse feeding trials with whole food/feed derived from genetically modified plants. Archives of Toxicology, 2016, 90, 2287-2291.	1.9	3
33	Validation of multivariate classification methods using analytical fingerprints – concept and case study on organic feed for laying hens. Journal of Food Composition and Analysis, 2016, 51, 15-23.	1.9	45
34	Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles. Environmental Toxicology and Chemistry, 2016, 35, 2958-2967.	2.2	25
35	Enhancing the interpretation of statistical P values in toxicology studies: implementation of linear mixed models (LMMs) and standardized effect sizes (SESs). Archives of Toxicology, 2016, 90, 731-751.	1.9	21
36	The power of statistical tests using field trial count data of nontarget organisms in environmental risk assessment of genetically modified plants. Agricultural and Forest Entomology, 2015, 17, 164-172.	0.7	3

#	Article	IF	CITATIONS
37	Testing a cumulative and aggregate exposure model using biomonitoring studies and dietary records for Italian vineyard spray operators. Food and Chemical Toxicology, 2015, 79, 45-53.	1.8	13
38	Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food. Journal of Nanoparticle Research, 2015, 17, 251.	0.8	16
39	New approaches to uncertainty analysis for use in aggregate and cumulative risk assessment of pesticides. Food and Chemical Toxicology, 2015, 79, 54-64.	1.8	24
40	The ACROPOLIS project: Its aims, achievements, and way forward. Food and Chemical Toxicology, 2015, 79, 1-4.	1.8	13
41	Prediction of fruit and vegetable intake from biomarkers using individual participant data of diet-controlled intervention studies. British Journal of Nutrition, 2015, 113, 1396-1409.	1.2	28
42	The MCRA model for probabilistic single-compound and cumulative risk assessment of pesticides. Food and Chemical Toxicology, 2015, 79, 5-12.	1.8	60
43	Cumulative dietary exposure to a selected group of pesticides of the triazole group in different European countries according to the EFSA guidance on probabilistic modelling. Food and Chemical Toxicology, 2015, 79, 13-31.	1.8	41
44	A European model and case studies for aggregate exposure assessment of pesticides. Food and Chemical Toxicology, 2015, 79, 32-44.	1.8	28
45	Parametric estimation of <i>P</i> (<i>X</i> > <i>Y</i>) for normal distributions in the context of probabilistic environmental risk assessment. PeerJ, 2015, 3, e1164.	0.9	2
46	Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically Consumed Foods in a Single-Replicate Study Design: EPIC Case Study. PLoS ONE, 2014, 9, e113160.	1.1	15
47	Odor measurements according to EN 13725: A statistical analysis of variance components. Atmospheric Environment, 2014, 86, 9-15.	1.9	33
48	Computational tool for usual intake modelling workable at the European level. Food and Chemical Toxicology, 2014, 74, 279-288.	1.8	5
49	Safety assessment of plant varieties using transcriptomics profiling and a one-class classifier. Regulatory Toxicology and Pharmacology, 2014, 70, 297-303.	1.3	20
50	A statistical simulation model for field testing of nonâ€ŧarget organisms in environmental risk assessment of genetically modified plants. Ecology and Evolution, 2014, 4, 1267-1283.	0.8	10
51	A protocol for evaluating the sustainability of agri-food production systems—A case study on potato production in peri-urban agriculture in The Netherlands. Ecological Indicators, 2014, 43, 315-321.	2.6	47
52	A decision support tool for assessing scenario acceptability using a hierarchy of indicators with compensabilities and importance weights. Ecological Indicators, 2014, 43, 306-314.	2.6	12
53	A Statistical Method to Base Nutrient Recommendations on Meta-Analysis of Intake and Health-Related Status Biomarkers. PLoS ONE, 2014, 9, e93171.	1.1	4
54	The costs of complex model optimization. Chemometrics and Intelligent Laboratory Systems, 2013, 125, 139-146.	1.8	5

#	Article	IF	CITATIONS
55	Systematic review with dose-response meta-analyses between vitamin B-12 intake and European Micronutrient Recommendations Aligned's prioritized biomarkers of vitamin B-12 including randomized controlled trials and observational studies in adults and elderly persons. American Journal of Clinical Nutrition, 2013, 97, 390-402.	2.2	37
56	Replacement of meat and dairy by plant-derived foods: estimated effects on land use, iron and SFA intakes in young Dutch adult females. Public Health Nutrition, 2013, 16, 1900-1907.	1.1	58
57	Modelling of Usual Nutrient Intakes: Potential Impact of the Choices Programme on Nutrient Intakes in Young Dutch Adults. PLoS ONE, 2013, 8, e72378.	1.1	34
58	A European tool for usual intake distribution estimation in relation to data collection by EFSA. EFSA Supporting Publications, 2012, 9, 300E.	0.3	16
59	Transformations of summary statistics as input in meta-analysis for linear dose-response models on a logarithmic scale: a methodology developed within EURRECA. BMC Medical Research Methodology, 2012, 12, 57.	1.4	26
60	A comparison by simulation of different methods to estimate the usual intake distribution for episodically consumed foods. EFSA Supporting Publications, 2012, 9, 299E.	0.3	22
61	Comparison of different exposure assessment methods to estimate the long-term dietary exposure to dioxins and ochratoxin A. Food and Chemical Toxicology, 2011, 49, 1979-1988.	1.8	19
62	Impact of foods with health logo on saturated fat, sodium and sugar intake of young Dutch adults. Public Health Nutrition, 2011, 14, 635-644.	1.1	22
63	A statistical assessment of differences and equivalences between genetically modified and reference plant varieties. BMC Biotechnology, 2011, 11, 15.	1.7	41
64	Uncertainty in Intake Due to Portion Size Estimation in 24-Hour Recalls Varies Between Food Groups. Journal of Nutrition, 2011, 141, 1396-1401.	1.3	21
65	Statistical modelling of usual intake. EFSA Supporting Publications, 2010, 7, .	0.3	2
66	Increased efficacy for in-house validation of real-time PCR GMO detection methods. Analytical and Bioanalytical Chemistry, 2010, 396, 2213-2227.	1.9	18
67	Longâ€ŧerm dietary exposure to lead in young children living in different European countries. EFSA Supporting Publications, 2010, 7, 51E.	0.3	9
68	The SAFE FOODS framework for improved risk analysis of foods. Food Control, 2010, 21, 1566-1587.	2.8	45
69	Can current dietary exposure models handle aggregated intake from different foods? A simulation study for the case of two foods. Food and Chemical Toxicology, 2010, 48, 178-186.	1.8	14
70	Commentary: Statistical aspects of environmental risk assessment of GM plants for effects on non-target organisms. Environmental Biosafety Research, 2009, 8, 65-78.	1.1	51
71	An integrated probabilistic framework for cumulative risk assessment of common mechanism chemicals in food: An example with organophosphorus pesticides. Regulatory Toxicology and Pharmacology, 2009, 54, 124-133.	1.3	59
72	A model for probabilistic health impact assessment of exposure to food chemicals. Food and Chemical Toxicology, 2009, 47, 2926-2940.	1.8	34

#	Article	IF	CITATIONS
73	Probabilistic acute dietary exposure assessments to captan and tolylfluanid using several European food consumption and pesticide concentration databases. Food and Chemical Toxicology, 2009, 47, 2890-2898.	1.8	17
74	Probabilistic modelling of exposure doses and implications for health risk characterization: Glycoalkaloids from potatoes. Food and Chemical Toxicology, 2009, 47, 2899-2905.	1.8	27
75	A semi-quantitative model for risk appreciation and risk weighing. Food and Chemical Toxicology, 2009, 47, 2941-2950.	1.8	14
76	Comparison of human health risks resulting from exposure to fungicides and mycotoxins via food. Food and Chemical Toxicology, 2009, 47, 2963-2974.	1.8	36
77	Probabilistic cumulative risk assessment of anti-androgenic pesticides in food. Food and Chemical Toxicology, 2009, 47, 2951-2962.	1.8	30
78	Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 1433-1449.	1.1	52
79	A standardized conjugation protocol to asses antibiotic resistance transfer between lactococcal species. International Journal of Food Microbiology, 2008, 127, 172-175.	2.1	46
80	Cumulative risk assessment of the exposure to organophosphorus and carbamate insecticides in the Dutch diet. Food and Chemical Toxicology, 2008, 46, 3090-3098.	1.8	78
81	Campylobacter Prevalence in the Broiler Supply Chain in the Netherlands. Poultry Science, 2008, 87, 2166-2172.	1.5	11
82	A probabilistic model for simultaneous exposure to multiple compounds from food and its use for risk–benefit assessment. Food and Chemical Toxicology, 2007, 45, 1496-1506.	1.8	57
83	Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization. Risk Analysis, 2007, 27, 351-371.	1.5	86
84	Analysis of multivariate extreme intakes of food chemicals. Food and Chemical Toxicology, 2006, 44, 994-1005.	1.8	14
85	How to construct a confidence interval fromonlyonemeasurementonacomposite sample assuming log-normality and known variance for the increment samples. Accreditation and Quality Assurance, 2005, 10, 452-454.	0.4	Ο
86	Risk assessment of dietary exposure to pesticides using a Bayesian method. Pest Management Science, 2005, 61, 759-766.	1.7	51
87	INTEGRATED STATISTICAL ANALYSIS OF cDNA MICROARRAY AND NIR SPECTROSCOPIC DATA APPLIED TO A HEMP DATASET. Journal of Bioinformatics and Computational Biology, 2005, 03, 891-913.	0.3	5
88	Calculations of dietary exposure to acrylamide. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2005, 580, 143-155.	0.9	80
89	Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biology and Technology, 2004, 34, 117-129.	2.9	62
90	Estimation of accordance and concordance in inter-laboratory trials of analytical methods with qualitative results. International Journal of Food Microbiology, 2004, 95, 231-234.	2.1	20

HILKO VAN DER VOET

#	Article	IF	CITATIONS
91	Predicting the chemical composition of fibre and core fraction of hemp (Cannabis sativa L.). Euphytica, 2004, 140, 39-45.	0.6	29
92	A Systematic Quantification of the Sources of Variation of Process Analytical Measurements in the Steel Industry. Quality Engineering, 2003, 15, 391-402.	0.7	0
93	Identification of the SAAT Gene Involved in Strawberry Flavor Biogenesis by Use of DNA Microarrays. Plant Cell, 2000, 12, 647-661.	3.1	496
94	Inter-laboratory, time, and fitness-for-purpose aspects of effective validation. Analytica Chimica Acta, 1999, 391, 159-171.	2.6	25
95	Pseudo-degrees of freedom for complex predictive models: the example of partial least squares. Journal of Chemometrics, 1999, 13, 195-208.	0.7	76
96	Optimizing the balance between false positive and false negative error probabilities of confirmatory methods for the detection of veterinary drug residuesâ€. Analyst, The, 1999, 124, 109-114.	1.7	13
97	Detection of residues using multivariate modelling of low-level GC-MS measurements. Journal of Chemometrics, 1998, 12, 279-294.	0.7	12
98	Characterizing the suitability of new ponds for amphibians. Amphibia - Reptilia, 1998, 19, 125-142.	0.1	39
99	C P and Prediction with Many Regressors: Comments on Mallows (1995). Technometrics, 1997, 39, 115.	1.3	2
100	Comparing the predictive accuracy of models using a simple randomization test. Chemometrics and Intelligent Laboratory Systems, 1995, 28, 315.	1.8	9
101	Comparing the predictive accuracy of models using a simple randomization test. Chemometrics and Intelligent Laboratory Systems, 1994, 25, 313-323.	1.8	429
102	Diet and condition of wild boar, <i>Sus scrofu scrofu</i> , without supplementary feeding. Journal of Zoology, 1994, 233, 631-648.	0.8	111
103	An uncertainty analysis of the process-based growth model FORGRO. Forest Ecology and Management, 1994, 69, 157-166.	1.4	16
104	A risk-assessment model for toxic exposure of small mammalian carnivores to cadmium in contaminated natural environments. Science of the Total Environment, 1993, 134, 1701-1714.	3.9	14
105	A dose-effect relationship for the effect of deltamethrin on a linyphiid spider population in winter wheat. Archives of Environmental Contamination and Toxicology, 1992, 22, 114-121.	2.1	15
106	Patterns in clinical chemistry requests. Journal of Automated Methods and Management in Chemistry, 1989, 11, 55-63.	0.4	0
107	Influence of variable selection and sample size on classification results with classy. Analytica Chimica Acta, 1989, 220, 119-134.	2.6	1
108	The evaluation of probabilistic classification methods. Analytica Chimica Acta, 1988, 209, 1-27.	2.6	8

#	Article	IF	CITATIONS
109	Exploring multivariate clinical chemical routine data concerning three major disease groups. Journal of Automated Methods and Management in Chemistry, 1988, 10, 67-78.	0.4	0
110	New probabilistic versions of the SIMCA and CLASSY Classification methods. Analytica Chimica Acta, 1987, 192, 63-75.	2.6	18
111	Stepwise deletion: a technique for missing-data handling in multivariate analysis. Analytica Chimica Acta, 1987, 193, 255-268.	2.6	10
112	Interactive microcomputer version of the CLAS program for classification and evaluation. TrAC - Trends in Analytical Chemistry, 1987, 6, 192-193.	5.8	3
113	CLAS: A program for classification and its evaluation. TrAC - Trends in Analytical Chemistry, 1986, 5, 224-225.	5.8	1
114	The clas program for classification and evaluation. Analytica Chimica Acta, 1986, 191, 33-45.	2.6	9
115	The evaluation of probabilistic classification methods. Analytica Chimica Acta, 1986, 191, 47-62.	2.6	5
116	New probabilistic version of the simca and classy classification methods. Analytica Chimica Acta, 1986, 191, 63-73.	2.6	5
117	Estimation of individual ultraviolet spectra in incomplete two-component separations by high-performance liquid chromatography. Analytica Chimica Acta, 1985, 170, 245-253.	2.6	3
118	A Discussion of Principal Component Analysis. Journal of Analytical Toxicology, 1985, 9, 185-186.	1.7	3
119	The use of pattern recognition techniques in chemical differentiation between bordeaux and bourgogne wines. Analytica Chimica Acta, 1984, 159, 159-171.	2.6	31
120	The improvement of SIMCA classification by using kernel density estimation. Analytica Chimica Acta, 1984, 161, 115-123.	2.6	18
121	The improvement of SIMCA classification by using kernel density estimation. Analytica Chimica Acta, 1984, 161, 125-134.	2.6	19
122	On-line diode array UV—visible spectrometry in screening for drugs and drug metabolites by high-performance liquid chromatography. Journal of Chromatography A, 1983, 267, 329-345.	1.8	18
123	The use of the Durbin-Watson statistic for testing the validity of kinetic models for dissolution. International Journal of Pharmaceutics, 1983, 14, 291-298.	2.6	6