Gloria Spandre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565021/publications.pdf

Version: 2024-02-01

2101 2747 39,105 351 100 192 citations g-index h-index papers 359 359 359 14521 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	THE LARGE AREA TELESCOPE ON THE <i>FERMI GAMMA-RAY SPACE TELESCOPE</i> MISSION. Astrophysical Journal, 2009, 697, 1071-1102.	4.5	3,048
2	<i>FERMI</i> LARGE AREA TELESCOPE THIRD SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2015, 218, 23.	7.7	1,224
3	<i>FERMI</i> LARGE AREA TELESCOPE SECOND SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2012, 199, 31.	7.7	1,079
4	Searching for Dark Matter Annihilation from MilkyÂWay Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. Physical Review Letters, 2015, 115, 231301.	7.8	881
5	FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2010, 188, 405-436.	7.7	851
6	<i>Fermi</i> Large Area Telescope Fourth Source Catalog. Astrophysical Journal, Supplement Series, 2020, 247, 33.	7.7	817
7	Measurement of the Cosmic Ray <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mo>+</mml:mo> from 20ÂGeV to 1ÂTeV with the Fermi Large Area Telescope. Physical Review Letters, 2009, 102, 181101.</mml:math>	ะ< ภาธาไ: msเ	upv74mml:mis
8	THE SPECTRAL ENERGY DISTRIBUTION OF (i) FERMI (i) BRIGHT BLAZARS. Astrophysical Journal, 2010, 716, 30-70.	4.5	741
9	THE SECOND <i>FERMI</i> LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS. Astrophysical Journal, Supplement Series, 2013, 208, 17.	7.7	693
	Journal, Supplement School, 2013, 200, 111		
10	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, .	12.6	654
10	Multimessenger observations of a flaring blazar coincident with high-energy neutrino	12.6	654 591
	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, . Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science, 2013, 339,		
11	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, . Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science, 2013, 339, 807-811. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100ÂMeV AND 820ÂGeV.	12.6	591
11 12	Multimessenger observations of a flaring blazar coincident with high-energy neutrino lceCube-170922A. Science, 2018, 361, . Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science, 2013, 339, 807-811. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100ÂMeV AND 820ÂGeV. Astrophysical Journal, 2015, 799, 86.	12.6 4.5	591 556
11 12 13	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361,. Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science, 2013, 339, 807-811. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100ÂMeV AND 820ÂGeV. Astrophysical Journal, 2015, 799, 86. <a 10.1001="" doi.org="" href="https://doi.</td><td>12.6
4.5
4.5</td><td>591
556
535</td></tr><tr><td>11
12
13</td><td>Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, . Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science, 2013, 339, 807-811. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100ÂMeV AND 820ÂGeV. Astrophysical Journal, 2015, 799, 86. <i > FERMI</i> </i> <i>> FERMI</i> I) - LAT OBSERVATIONS OF THE DIFFUSE Î3-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM. Astrophysical Journal, 2012, 750, 3. THE SECOND CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE < i> FERMI Astrophysical Journal, 2011, 743, 171.</td><td>12.6
4.5
4.5</td><td>591
556
535
525</td></tr><tr><td>11
12
13
14</td><td>Multimessenger observations of a flaring blazar coincident with high-energy neutrino lceCube-170922A. Science, 2018, 361,. Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science, 2013, 339, 807-811. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100ÂMeV AND 820ÂGeV. Astrophysical Journal, 2015, 799, 86. <a href=" https:="" j.neutro.com="" science-neutro-neu<="" td=""><td>12.6 4.5 4.5 4.5</td><td>591556535525523</td>	12.6 4.5 4.5 4.5	591556535525523

#	Article	IF	Citations
19	Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope. Physical Review Letters, 2012, 108, 011103.	7.8	445
20	Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data. Physical Review Letters, 2010, 104, 101101.	7.8	433
21	THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE <i>FERMI</i> LARGE AREA TELESCOPE. Astrophysical Journal, 2010, 715, 429-457.	4.5	415
22	THE <i>FERMI</i> LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION. Astrophysical Journal, Supplement Series, 2012, 203, 4.	7.7	403
23	THE FIRST <i>FERMI</i> LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS. Astrophysical Journal, Supplement Series, 2010, 187, 460-494.	7.7	396
24	FERMI/LARGE AREA TELESCOPE BRIGHT GAMMA-RAY SOURCE LIST. Astrophysical Journal, Supplement Series, 2009, 183, 46-66.	7.7	394
25	BRIGHT ACTIVE GALACTIC NUCLEI SOURCE LIST FROM THE FIRST THREE MONTHS OF THE <i>FERMI </i> AREA TELESCOPE ALL-SKY SURVEY. Astrophysical Journal, 2009, 700, 597-622.	4.5	349
26	An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars. Nature, 2001, 411, 662-665.	27.8	318
27	DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA. Astrophysical Journal, Supplement Series, 2016, 223, 26.	7.7	313
28	<i>FERMI</i> OBSERVATIONS OF GRB 090510: A SHORT-HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES. Astrophysical Journal, 2010, 716, 1178-1190.	4.5	306
29	FERMI-LAT OBSERVATIONS OF HIGH-ENERGY Î ³ -RAY EMISSION TOWARD THE GALACTIC CENTER. Astrophysical Journal, 2016, 819, 44.	4.5	301
30	Gamma-Ray Flares from the Crab Nebula. Science, 2011, 331, 739-742.	12.6	297
31	GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THE <i>FERMI </i> I>LARGE AREA TELESCOPE. Astrophysical Journal, 2012, 755, 164.	4.5	297
32	GAMMA-RAY LIGHT CURVES AND VARIABILITY OF BRIGHT <i>FERMI</i> Journal, 2010, 722, 520-542.	4.5	292
33	Fermi LAT observations of cosmic-ray electrons from 7ÂGeV to 1ÂTeV. Physical Review D, 2010, 82, .	4.7	276
34	Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT. Science, 2009, 325, 840-844.	12.6	264
35	The Fermi Galactic Center GeV Excess and Implications for Dark Matter. Astrophysical Journal, 2017, 840, 43.	4.5	264
36	<i>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF MARKARIAN 421: THE MISSING PIECE OF ITS SPECTRAL ENERGY DISTRIBUTION. Astrophysical Journal, 2011, 736, 131.	4.5	261

3

#	Article	IF	CITATIONS
37	OBSERVATIONS OF MILKY WAY DWARF SPHEROIDAL GALAXIES WITH THE <i>FERMI </i> I>-LARGE AREA TELESCOPE DETECTOR AND CONSTRAINTS ON DARK MATTER MODELS. Astrophysical Journal, 2010, 712, 147-158.	4.5	243
38	THE SPECTRUM AND MORPHOLOGY OF THE <i>FERMI</i> BUBBLES. Astrophysical Journal, 2014, 793, 64.	4.5	239
39	<i>>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF THE CRAB PULSAR AND NEBULA. Astrophysical Journal, 2010, 708, 1254-1267.	4.5	237
40	THE FIRST <i>FERMI</i> -LAT GAMMA-RAY BURST CATALOG. Astrophysical Journal, Supplement Series, 2013, 209, 11.	7.7	232
41	RADIO-LOUD NARROW-LINE SEYFERT 1 AS A NEW CLASS OF GAMMA-RAY ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2009, 707, L142-L147.	4.5	230
42	3FHL: The Third Catalog of Hard Fermi-LAT Sources. Astrophysical Journal, Supplement Series, 2017, 232, 18.	7.7	227
43	On possible interpretations of the high energy electron–positron spectrum measured by the Fermi Large Area Telescope. Astroparticle Physics, 2009, 32, 140-151.	4.3	221
44	Gamma-Ray Emission from the Shell of Supernova Remnant W44 Revealed by the Fermi LAT. Science, 2010, 327, 1103-1106.	12.6	220
45	Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope. Physical Review D, 2015, 91, .	4.7	220
46	2FHL: THE SECOND CATALOG OF HARD FERMI-LAT SOURCES. Astrophysical Journal, Supplement Series, 2016, 222, 5.	7.7	219
47	<i>FERMI</i> LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSION IN THE DIRECTION OF SUPERNOVA REMNANT W51C. Astrophysical Journal, 2009, 706, L1-L6.	4.5	216
48	Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A. Science, 2014, 343, 42-47.	12.6	211
49	OBSERVATIONS OF THE YOUNG SUPERNOVA REMNANT RX J1713.7–3946 WITH THE <i>FERMI</i> LARGE AREA TELESCOPE. Astrophysical Journal, 2011, 734, 28.	4.5	209
50	The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars. Science, 2012, 338, 1190-1192.	12.6	207
51	The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophysical Journal, 2020, 892, 105.	4.5	204
52	OBSERVATION OF SUPERNOVA REMNANT ICÂ443 WITH THE FERMI LARGE AREA TELESCOPE. Astrophysical Journal, 2010, 712, 459-468.	4.5	203
53	A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope. Science, 2009, 325, 848-852.	12.6	190
54	THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG. Astrophysical Journal, Supplement Series, 2016, 224, 8.	7.7	190

#	Article	IF	CITATIONS
55	Fermi Gamma-Ray Imaging of a Radio Galaxy. Science, 2010, 328, 725-729.	12.6	187
56	CONSTRAINTS ON THE GALACTIC HALO DARK MATTER FROM (i) FERMI (/i) -LAT DIFFUSE MEASUREMENTS. Astrophysical Journal, 2012, 761, 91.	4.5	186
57	INSIGHTS INTO THE HIGH-ENERGY γ-RAY EMISSION OF MARKARIAN 501 FROM EXTENSIVE MULTIFREQUENCY OBSERVATIONS IN THE <i>FERMI</i> FERA. Astrophysical Journal, 2011, 727, 129.	4.5	185
58	THE FIRST <i>FERMI</i> -LAT CATALOG OF SOURCES ABOVE 10 GeV. Astrophysical Journal, Supplement Series, 2013, 209, 34.	7.7	184
59	<i>>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT W28 (G6.4–0.1). Astrophysical Journal, 2010, 718, 348-356.	4.5	180
60	THE <i>>FERMI</i> -LAT HIGH-LATITUDE SURVEY: SOURCE COUNT DISTRIBUTIONS AND THE ORIGIN OF THE EXTRAGALACTIC DIFFUSE BACKGROUND. Astrophysical Journal, 2010, 720, 435-453.	4.5	179
61	DETECTION OF GAMMA-RAY EMISSION FROM THE STARBURST GALAXIES M82 AND NGC 253 WITH THE LARGE AREA TELESCOPE ON <i>FERMI</i> . Astrophysical Journal Letters, 2010, 709, L152-L157.	8.3	179
62	DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A. Astrophysical Journal, 2011, 729, 114.	4.5	179
63	Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications. Physical Review D, 2013, 88, .	4.7	175
64	<i>FERMI</i> OBSERVATIONS OF CASSIOPEIA AND CEPHEUS: DIFFUSE GAMMA-RAY EMISSION IN THE OUTER GALAXY. Astrophysical Journal, 2010, 710, 133-149.	4.5	172
65	<i>FERMIGAMMA-RAY SPACE TELESCOPE</i> OBSERVATIONS OF THE GAMMA-RAY OUTBURST FROM 3C454.3 IN NOVEMBER 2010. Astrophysical Journal Letters, 2011, 733, L26.	8.3	170
66	SPECTRAL PROPERTIES OF BRIGHT <i>FERMI</i> Observed Blazars In the Gamma-Ray Band. Astrophysical Journal, 2010, 710, 1271-1285.	4.5	166
67	Fermi Large Area Telescope Search for Photon Lines from 30 to 200ÂGeV and Dark Matter Implications. Physical Review Letters, 2010, 104, 091302.	7.8	166
68	<i>FERMI</i> DISCOVERY OF GAMMA-RAY EMISSION FROM NGC 1275. Astrophysical Journal, 2009, 699, 31-39.	4.5	165
69	Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni. Science, 2010, 329, 817-821.	12.6	165
70	<i>FERMI</i> /i>/LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM A RELATIVISTIC JET IN THE NARROW-LINE QUASAR PMN J0948+0022. Astrophysical Journal, 2009, 699, 976-984.	4.5	161
71	<i>FERMI</i> LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87. Astrophysical Journal, 2009, 707, 55-60.	4.5	153
72	GRB110721A: AN EXTREME PEAK ENERGY AND SIGNATURES OF THE PHOTOSPHERE. Astrophysical Journal Letters, 2012, 757, L31.	8.3	152

#	Article	lF	Citations
73	A Decade of Gamma-Ray Bursts Observed by Fermi-LAT: The Second GRB Catalog. Astrophysical Journal, 2019, 878, 52.	4.5	152
74	Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope. Physical Review Letters, 2016, 116, 161101.	7.8	151
75	<i>>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF MISALIGNED ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2010, 720, 912-922.	4.5	148
76	Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 025-025.	5.4	145
77	SIMULTANEOUS OBSERVATIONS OF PKS 2155–304 WITH HESS, <i>FERMI</i> , <i>RXTE</i> , AND ATOM: SPECTRAL ENERGY DISTRIBUTIONS AND VARIABILITY IN A LOW STATE. Astrophysical Journal, 2009, 696, L150-L155.	4.5	144
78	MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113. Astrophysical Journal Letters, 2015, 813, L41.	8.3	144
79	EARLY FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF THE QUASAR 3C 454.3. Astrophysical Journal, 2009, 699, 817-823.	4.5	141
80	<i>>FERMI</i> LARGE AREA TELESCOPE VIEW OF THE CORE OF THE RADIO GALAXY CENTAURUS A. Astrophysical Journal, 2010, 719, 1433-1444.	4.5	141
81	GeV GAMMA-RAY FLUX UPPER LIMITS FROM CLUSTERS OF GALAXIES. Astrophysical Journal Letters, 2010, 717, L71-L78.	8.3	140
82	Cosmic-ray electron-positron spectrum from 7ÂGeV to 2ÂTeV with the Fermi Large Area Telescope. Physical Review D, 2017, 95, .	4.7	138
83	Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes. Physical Review Letters, 2009, 103, 251101.	7.8	133
84	<i>SWIFT</i> AND <i>FERMI</i> OBSERVATIONS OF THE EARLY AFTERGLOW OF THE SHORT GAMMA-RAY BURST 090510. Astrophysical Journal Letters, 2010, 709, L146-L151.	8.3	130
85	DISCOVERY OF HIGH-ENERGY GAMMA-RAY EMISSION FROM THE BINARY SYSTEM PSR B1259–63/LS 2883 AROUND PERIASTRON WITH ⟨i⟩ FERMI⟨i⟩. Astrophysical Journal Letters, 2011, 736, L11.	8.3	130
86	Resolving the Extragalactic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi></mml:math> -Ray Background above 50ÂGeV with the Fermi Large Area Telescope. Physical Review Letters, 2016, 116, 151105.	7.8	130
87	Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 014-014.	5.4	129
88	The on-orbit calibration of the Fermi Large Area Telescope. Astroparticle Physics, 2009, 32, 193-219.	4.3	123
89	SEARCH FOR COSMIC-RAY-INDUCED GAMMA-RAY EMISSION IN GALAXY CLUSTERS. Astrophysical Journal, 2014, 787, 18.	4.5	123
90	The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope. Astrophysical Journal, Supplement Series, 2018, 237, 32.	7.7	121

#	Article	IF	CITATIONS
91	<i>>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR. Astrophysical Journal, 2009, 696, 1084-1093.	4.5	120
92	<i>FERMI</i> LAT OBSERVATIONS OF LS I +61°303: FIRST DETECTION OF AN ORBITAL MODULATION IN GeV GAMMA RAYS. Astrophysical Journal, 2009, 701, L123-L128.	4.5	119
93	<i>FERMI</i> /LAT OBSERVATIONS OF LS 5039. Astrophysical Journal, 2009, 706, L56-L61.	4.5	119
94	<i>FERMI /i>OBSERVATIONS OF TeV-SELECTED ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2009, 707, 1310-1333.</i>	4.5	114
95	THE RADIO/GAMMA-RAY CONNECTION IN ACTIVE GALACTIC NUCLEI IN THE ERA OF THE <i>FERMI </i> LARGE AREA TELESCOPE. Astrophysical Journal, 2011, 741, 30.	4.5	113
96	Observations of the Large Magellanic Cloud with <i>Fermi </i> Astronomy and Astrophysics, 2010, 512, A7.	5.1	106
97	<i>FERMI</i> LARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE. Astrophysical Journal, 2010, 723, 1082-1096.	4.5	106
98	eXTP: Enhanced X-ray Timing and Polarization mission. Proceedings of SPIE, 2016, , .	0.8	106
99	XIPE: the X-ray imaging polarimetry explorer. Experimental Astronomy, 2013, 36, 523-567.	3.7	103
100	Î ³ -RAY AND PARSEC-SCALE JET PROPERTIES OF A COMPLETE SAMPLE OF BLAZARS FROM THE MOJAVE PROGRAM. Astrophysical Journal, 2011, 742, 27.	4.5	101
101	Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC. Journal of Instrumentation, 2013, 8, C02028-C02028.	1.2	101
102	A STATISTICAL APPROACH TO RECOGNIZING SOURCE CLASSES FOR UNASSOCIATED SOURCES IN THE FIRST <i>FERMI</i> LAT CATALOG. Astrophysical Journal, 2012, 753, 83.	4.5	100
103	HIGH-ENERGY GAMMA-RAY EMISSION FROM SOLAR FLARES: SUMMARY OF < i > FERMI < /i > LARGE AREA TELESCOPE DETECTIONS AND ANALYSIS OF TWO M-CLASS FLARES. Astrophysical Journal, 2014, 787, 15.	4.5	100
104	<i>FERMI i>LAT OBSERVATION OF DIFFUSE GAMMA RAYS PRODUCED THROUGH INTERACTIONS BETWEEN LOCAL INTERSTELLAR MATTER AND HIGH-ENERGY COSMIC RAYS. Astrophysical Journal, 2009, 703, 1249-1256.</i>	4.5	99
105	<i>FERMI</i> LARGE AREA TELESCOPE AND MULTI-WAVELENGTH OBSERVATIONS OF THE FLARING ACTIVITY OF PKS 1510-089 BETWEEN 2008 SEPTEMBER AND 2009 JUNE. Astrophysical Journal, 2010, 721, 1425-1447.	4.5	99
106	Direct reading of charge multipliers with a self-triggering CMOS analog chip with 105k pixels at 50νm pitch. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 566, 552-562.	1.6	98
107	<i>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF TWO GAMMA-RAY EMISSION COMPONENTS FROM THE QUIESCENT SUN. Astrophysical Journal, 2011, 734, 116.	4.5	98
108	A sealed Gas Pixel Detector for X-ray astronomy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579, 853-858.	1.6	96

#	Article	IF	CITATIONS
109	THE VELA PULSAR: RESULTS FROM THE FIRST YEAR OF <i>FERMI </i> Iournal, 2010, 713, 154-165.	4.5	96
110	CONSTRAINTS ON THE COSMIC-RAY DENSITY GRADIENT BEYOND THE SOLAR CIRCLE FROM $\langle i \rangle$ FERMI $\langle i \rangle$ Î ³ -RAY OBSERVATIONS OF THE THIRD GALACTIC QUADRANT. Astrophysical Journal, 2011, 726, 81.	4.5	96
111	IMPULSIVE AND LONG DURATION HIGH-ENERGY GAMMA-RAY EMISSION FROM THE VERY BRIGHT 2012 MARCH 7 SOLAR FLARES. Astrophysical Journal, 2014, 789, 20.	4.5	96
112	<i>>Fermi</i> Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33. Astronomy and Astrophysics, 2010, 523, L2.	5.1	94
113	CONSTRAINTS ON THE GALACTIC POPULATION OF TeV PULSAR WIND NEBULAE USING (i>FERMILARGE AREA TELESCOPE OBSERVATIONS. Astrophysical Journal, 2013, 773, 77.	4.5	94
114	Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations. Science, 2012, 338, 1314-1317.	12.6	92
115	The micro-gap chamber. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 335, 69-77.	1.6	89
116	SEARCH FOR GAMMA-RAY EMISSION FROM THE COMA CLUSTER WITH SIX YEARS OF FERMI-LAT DATA. Astrophysical Journal, 2016, 819, 149.	4.5	88
117	The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1. Science, 2008, 322, 1218-1221.	12.6	87
118	PKS 1502+106: A NEW AND DISTANT GAMMA-RAY BLAZAR IN OUTBURST DISCOVERED BY THE <i>>FERMI</i> LARGE AREA TELESCOPE. Astrophysical Journal, 2010, 710, 810-827.	4.5	87
119	Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT. Physical Review D, 2012, 85, .	4.7	87
120	MULTIWAVELENGTH MONITORING OF THE ENIGMATIC NARROW-LINE SEYFERT 1 PMN J0948+0022 IN 2009 MARCH-JULY. Astrophysical Journal, 2009, 707, 727-737.	4.5	81
121	Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi. Science, 2009, 325, 845-848.	12.6	80
122	VERY HIGH ENERGY <i>γ</i> -RAYS FROM THE UNIVERSE'S MIDDLE AGE: DETECTION OF THE <i>z</i> = 0.940 BLAZAR PKS 1441+25 WITH MAGIC. Astrophysical Journal Letters, 2015, 815, L23.) 8.3	78
123	Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6–5856. Science, 2012, 335, 189-193.	12.6	74
124	Towards breast tomography with synchrotron radiation at Elettra: first images. Physics in Medicine and Biology, 2016, 61, 1634-1649.	3.0	74
125	DETECTION OF THE ENERGETIC PULSAR PSR B1509–58 AND ITS PULSAR WIND NEBULA IN MSH 15–52 USIN THE <i>FERMI</i> LARGE AREA TELESCOPE. Astrophysical Journal, 2010, 714, 927-936.	C 4.5	72
126	PSR J1907+0602: A RADIO-FAINT GAMMA-RAY PULSAR POWERING A BRIGHT TeV PULSAR WIND NEBULA. Astrophysical Journal, 2010, 711, 64-74.	4.5	72

#	Article	IF	Citations
127	THE DISCOVERY OF Î ³ -RAY EMISSION FROM THE BLAZAR RGB J0710+591. Astrophysical Journal Letters, 2010, 715, L49-L55.	8.3	72
128	Detection of the Small Magellanic Cloud in gamma-rays withÂ <i>Fermi</i> /i>/LAT. Astronomy and Astrophysics, 2010, 523, A46.	5.1	70
129	MULTI-WAVELENGTH OBSERVATIONS OF THE FLARING GAMMA-RAY BLAZAR 3C 66A IN 2008 OCTOBER. Astrophysical Journal, 2011, 726, 43.	4.5	70
130	Observations of M31 and M33 with the Fermi Large Area Telescope: A Galactic Center Excess in Andromeda?. Astrophysical Journal, 2017, 836, 208.	4.5	70
131	Search for Extended Sources in the Galactic Plane Using Six Years of Fermi-Large Area Telescope Pass 8 Data above 10 GeV. Astrophysical Journal, 2017, 843, 139.	4. 5	70
132	PIXIE III: a very large area photon-counting CMOS pixel ASIC for sharp X-ray spectral imaging. Journal of Instrumentation, 2015, 10, C01032-C01032.	1.2	68
133	The Instrument of the Imaging X-Ray Polarimetry Explorer. Astronomical Journal, 2021, 162, 208.	4.7	68
134	<i>FERMI</i> LARGE AREA TELESCOPE OBSERVATION OF A GAMMA-RAY SOURCE AT THE POSITION OF ETA CARINAE. Astrophysical Journal, 2010, 723, 649-657.	4.5	67
135	Design, construction, and test of the Gas Pixel Detectors for the IXPE mission. Astroparticle Physics, 2021, 133, 102628.	4.3	67
136	DISCOVERY OF VERY HIGH ENERGY GAMMA RAYS FROM PKS 1424+240 AND MULTIWAVELENGTH CONSTRAINTS ON ITS REDSHIFT. Astrophysical Journal Letters, 2010, 708, L100-L106.	8.3	66
137	DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE < i>FERMI < /i>I > LARGE AREA TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2013, 765, 54.	4. 5	66
138	A microstrip gas avalanche chamber with two-dimensional readout. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 283, 755-761.	1.6	65
139	<i>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA-X PULSAR WIND NEBULA. Astrophysical Journal, 2010, 713, 146-153.	4.5	64
140	Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope. Physical Review D, 2010, 82, .	4.7	64
141	Deep view of the Large Magellanic Cloud with six years of <i>Fermi</i> -LAT observations. Astronomy and Astrophysics, 2016, 586, A71.	5.1	64
142	The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis. Astrophysical Journal, 2017, 846, 34.	4.5	63
143	The WELL detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 423, 125-134.	1.6	60
144	<i>FERMI</i> -LAT SEARCH FOR PULSAR WIND NEBULAE AROUND GAMMA-RAY PULSARS. Astrophysical Journal, 2011, 726, 35.	4.5	60

#	Article	IF	Citations
145	FERMI LARGE AREA TELESCOPE DETECTION OF EXTENDED GAMMA-RAY EMISSION FROM THE RADIO GALAXY FORNAX A. Astrophysical Journal, 2016, 826, 1.	4.5	60
146	Fermi large area telescope observations of the cosmic-ray induced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray emission of the Earth's atmosphere. Physical Review D, 2009, 80, .</mml:math 	4.7	57
147	<i>FERMI</i> -LAT OBSERVATIONS OF THE GEMINGA PULSAR. Astrophysical Journal, 2010, 720, 272-283.	4.5	57
148	<i>FERMI</i> OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 080825C. Astrophysical Journal, 2009, 707, 580-592.	4.5	56
149	GAMMA-RAY AND RADIO PROPERTIES OF SIX PULSARS DETECTED BY THE <i>FERMI</i> LARGE AREA TELESCOPE. Astrophysical Journal, 2010, 708, 1426-1441.	4.5	56
150	The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks. Science, 2014, 343, 51-54.	12.6	55
151	<i>FERMI</i> DETECTION OF DELAYED GeV EMISSION FROM THE SHORT GAMMA-RAY BURST 081024B. Astrophysical Journal, 2010, 712, 558-564.	4.5	54
152	MULTI-WAVELENGTH OBSERVATIONS OF BLAZAR AO 0235+164 IN THE 2008-2009 FLARING STATE. Astrophysical Journal, 2012, 751, 159.	4.5	54
153	Fermi-LAT Observations of High-energy Behind-the-limb Solar Flares. Astrophysical Journal, 2017, 835, 219.	4.5	53
154	Gas pixel detectors for X-ray polarimetry applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 560, 425-434.	1.6	52
155	THE FIRST <i>FERMI</i> MULTIFREQUENCY CAMPAIGN ON BL LACERTAE: CHARACTERIZING THE LOW-ACTIVITY STATE OF THE EPONYMOUS BLAZAR. Astrophysical Journal, 2011, 730, 101.	4.5	52
156	<i>FERMI</i> LARGE AREA TELESCOPE STUDY OF COSMIC RAYS AND THE INTERSTELLAR MEDIUM IN NEARBY MOLECULAR CLOUDS. Astrophysical Journal, 2012, 755, 22.	4.5	52
157	SEARCH FOR EXTENDED GAMMA-RAY EMISSION FROM THE VIRGO GALAXY CLUSTER WITH FERMI-LAT. Astrophysical Journal, 2015, 812, 159.	4.5	52
158	Imaging performance of phase-contrast breast computed tomography with synchrotron radiation and a CdTe photon-counting detector. Physica Medica, 2016, 32, 681-690.	0.7	51
159	Re-detection and a possible time variation of soft X-ray polarization from the Crab. Nature Astronomy, 2020, 4, 511-516.	10.1	51
160	<i>FERMI</i> -LARGE AREA TELESCOPE OBSERVATIONS OF THE EXCEPTIONAL GAMMA-RAY OUTBURSTS OF 3C 273 IN 2009 SEPTEMBER. Astrophysical Journal Letters, 2010, 714, L73-L78.	8.3	49
161	Novel gaseous x-ray polarimeter: data analysis and simulation. , 2003, 4843, 383.		48
162	<i>>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT G8.7–0.1. Astrophysical Journal, 2012, 744, 80.	4.5	48

#	Article	IF	CITATIONS
163	Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow. Astrophysical Journal, 2020, 890, 9.	4.5	48
164	DISCOVERY OF PULSED γ-RAYS FROM PSR J0034–0534 WITH THE <i>FERMI</i> I>LARGE AREA TELESCOPE: A CAS FOR CO-LOCATED RADIO AND γ-RAY EMISSION REGIONS. Astrophysical Journal, 2010, 712, 957-963.	SE _{4.5}	47
165	THE <i>>FERMI</i> ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY. Astrophysical Journal, 2013, 771, 57.	4.5	47
166	Design and initial tests of the Tracker-converter of the Gamma-ray Large Area Space Telescope. Astroparticle Physics, 2007, 28, 422-434.	4.3	46
167	SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH < i > FERMI < / i > -LAT. Astrophysical Journal, 2012, 747, 104.	4.5	45
168	GAMMA-RAY FLARING ACTIVITY FROM THE GRAVITATIONALLY LENSED BLAZAR PKS 1830–211 OBSERVED BY <i>Fermi</i> I>LAT. Astrophysical Journal, 2015, 799, 143.	4.5	45
169	FERMI-LAT OBSERVATIONS OF THE LIGO EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L2.	8.3	45
170	PULSED GAMMA-RAYS FROM PSR J2021+3651 WITH THE <i>FERMI</i> LARGE AREA TELESCOPE. Astrophysical Journal, 2009, 700, 1059-1066.	4.5	44
171	PROSPECTS FOR GRB SCIENCE WITH THE <i>FERMI</i> LARGE AREA TELESCOPE. Astrophysical Journal, 2009, 701, 1673-1694.	4.5	44
172	PolarLight: a CubeSat X-ray polarimeter based on the gas pixel detector. Experimental Astronomy, 2019, 47, 225-243.	3.7	43
173	SEARCH FOR GAMMA-RAY EMISSION FROM MAGNETARS WITH THE <i>FERMI</i> LARGE AREA TELESCOPE. Astrophysical Journal Letters, 2010, 725, L73-L78.	8.3	42
174	<i>>FERMI</i> OBSERVATIONS OF THE VERY HARD GAMMA-RAY BLAZAR PG 1553+113. Astrophysical Journal, 2010, 708, 1310-1320.	4.5	42
175	Gamma-Ray Blazars within the First 2 Billion Years. Astrophysical Journal Letters, 2017, 837, L5.	8.3	42
176	<i>>FERMI</i> LARGE AREA TELESCOPE DETECTION OF PULSED γ-RAYS FROM THE VELA-LIKE PULSARS PSR J1048–5832 AND PSR J2229+6114. Astrophysical Journal, 2009, 706, 1331-1340.	4.5	41
177	An extremely bright gamma-ray pulsar in the Large Magellanic Cloud. Science, 2015, 350, 801-805.	12.6	41
178	The microstrip gas chamber. Nuclear Physics, Section B, Proceedings Supplements, 1991, 23, 254-260.	0.4	40
179	The micro-groove detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 424, 444-458.	1.6	38
180	PULSED GAMMA RAYS FROM THE MILLISECOND PULSAR J0030+0451 WITH THE <i>FERMI</i> LARGE AREA TELESCOPE. Astrophysical Journal, 2009, 699, 1171-1177.	4. 5	38

#	Article	IF	CITATIONS
181	Characterization of Pixirad-1 photon counting detector for X-ray imaging. Journal of Instrumentation, 2016, 11, P01015-P01015.	1.2	38
182	Search for Cosmic-Ray Electron and Positron Anisotropies with Seven Years of Fermi Large Area Telescope Data. Physical Review Letters, 2017, 118, 091103.	7.8	38
183	A Weighted Analysis to Improve the X-Ray Polarization Sensitivity of the Imaging X-ray Polarimetry Explorer. Astronomical Journal, 2022, 163, 170.	4.7	38
184	Results from the first use of microstrip gas chambers in a high-energy physics experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 315, 21-32.	1.6	37
185	<i>>FERMI</i> /LARGE AREA TELESCOPE DISCOVERY OF GAMMA-RAY EMISSION FROM THE FLAT-SPECTRUM RADIO QUASAR PKS 1454–354. Astrophysical Journal, 2009, 697, 934-941.	4.5	37
186	GAMMA-RAY OBSERVATIONS OF THE ORION MOLECULAR CLOUDS WITH THE < i > FERMI < /i > LARGE AREA TELESCOPE. Astrophysical Journal, 2012, 756, 4.	4.5	37
187	A microstrip gas chamber with true two-dimensional and pixel readout. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 323, 229-235.	1.6	36
188	ASSOCIATING LONG-TERM \hat{i}^3 -RAY VARIABILITY WITH THE SUPERORBITAL PERIOD OF LS I +61 \hat{A}° 303. Astrophysical Journal Letters, 2013, 773, L35.	8.3	36
189	DISCOVERY OF PULSATIONS FROM THE PULSAR J0205+6449 IN SNR 3C 58 WITH THE <i>FERMI GAMMA-RAY SPACE TELESCOPE</i> . Astrophysical Journal, 2009, 699, L102-L107.	4.5	34
190	DETECTION OF HIGH-ENERGY GAMMA-RAY EMISSION DURING THE X-RAY FLARING ACTIVITY IN GRB 100728A. Astrophysical Journal Letters, 2011, 734, L27.	8.3	34
191	A Significant Detection of X-ray Polarization in Sco X-1 with PolarLight and Constraints on the Corona Geometry. Astrophysical Journal Letters, 2022, 924, L13.	8.3	34
192	<i>>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF PSR J1836+5925. Astrophysical Journal, 2010, 712, 1209-1218.	4.5	33
193	MULTIFREQUENCY STUDIES OF THE PECULIAR QUASAR 4CÂ+21.35 DURING THE 2010 FLARING ACTIVITY. Astrophysical Journal, 2014, 786, 157.	4.5	33
194	What is the real gas gain of a standard GEM?. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 419, 429-437.	1.6	32
195	Energy characterization of Pixirad-1 photon counting detector system. Journal of Instrumentation, 2015, 10, C04010-C04010.	1.2	32
196	Fermi-LAT Observations of LIGO/Virgo Event GW170817. Astrophysical Journal, 2018, 861, 85.	4.5	32
197	First Fermi-LAT Solar Flare Catalog. Astrophysical Journal, Supplement Series, 2021, 252, 13.	7.7	32
198	DISCOVERY OF PULSED γ-RAYS FROM THE YOUNG RADIO PULSAR PSR J1028–5819 WITH THE ⟨i⟩FERMI⟨/i⟩ LARGE AREA TELESCOPE. Astrophysical Journal, 2009, 695, L72-L77.	4.5	31

#	Article	IF	Citations
199	Observation of the February 2011 Forbush decrease by the EEE telescopes. European Physical Journal Plus, 2011, 126, 1.	2.6	31
200	Ultrafast soft x-ray two-dimensional plasma imaging system based on gas electron multiplier detector with pixel readout. Review of Scientific Instruments, 2001, 72, 1372.	1.3	30
201	Low energy polarization sensitivity of the Gas Pixel Detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 584, 149-159.	1.6	30
202	Fermi Large Area Telescope Performance after 10 Years of Operation. Astrophysical Journal, Supplement Series, 2021, 256, 12.	7.7	30
203	Spectral and polarimetric characterization of the Gas Pixel Detector filled with dimethyl ether. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 620, 285-293.	1.6	29
204	Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun. Physical Review D, 2011, 84, .	4.7	29
205	A large area, high gain Micro Gap Chamber. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 362, 273-276.	1.6	28
206	Inferred Cosmic-Ray Spectrum from Fermi Large Area Telescope <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi></mml:math> -Ray Observations of Earth's Limb. Physical Review Letters, 2014, 112, 151103.	7.8	28
207	In-flight measurement of the absolute energy scale of the Fermi Large Area Telescope. Astroparticle Physics, 2012, 35, 346-353.	4.3	27
208	THE IMAGING PROPERTIES OF THE GAS PIXEL DETECTOR AS A FOCAL PLANE POLARIMETER. Astrophysical Journal, Supplement Series, 2014, 212, 25.	7.7	27
209	Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 535, 477-484.	1.6	27
210	<i>FERMI</i> OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A. Astrophysical Journal Letters, 2010, 717, L127-L132.	8.3	26
211	Photoelectric X-ray Polarimetry with Gas Pixel Detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 720, 173-177.	1.6	26
212	SEARCH FOR EARLY GAMMA-RAY PRODUCTION IN SUPERNOVAE LOCATED IN A DENSE CIRCUMSTELLAR MEDIUM WITH THE <i>FERMI </i> I > LAT. Astrophysical Journal, 2015, 807, 169.	4.5	26
213	Imaging with the invisible light. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 581, 246-253.	1.6	24
214	<i>>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF GAMMA-RAY PULSARS PSR J1057–5226, J1709–4-AND J1952+3252. Astrophysical Journal, 2010, 720, 26-40.	429 4.5	24
215	The EEE experiment project: status and first physics results. European Physical Journal Plus, 2013, 128, 1.	2.6	24
216	Imaging study of a phase-sensitive breast-CT system in continuous acquisition mode. Journal of Instrumentation, 2017, 12, C01016-C01016.	1.2	24

#	Article	IF	CITATIONS
217	<i>SUZAKU</i> OBSERVATIONS OF LUMINOUS QUASARS: REVEALING THE NATURE OF HIGH-ENERGY BLAZAR EMISSION IN LOW-LEVEL ACTIVITY STATES. Astrophysical Journal, 2010, 716, 835-849.	4.5	23
218	POLARIX: a pathfinder mission of X-ray polarimetry. Experimental Astronomy, 2010, 28, 137-183.	3.7	23
219	DEEP MORPHOLOGICAL AND SPECTRAL STUDY OF THE SNR RCW 86 WITH FERMI-LAT. Astrophysical Journal, 2016, 819, 98.	4.5	23
220	Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope. Astrophysical Journal, 2018, 857, 49.	4.5	23
221	MARS-2: A "current sensitive―liquid argon calorimeter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1984, 227, 227-236.	1.6	21
222	The silicon tracker readout electronics of the gamma-ray large area space telescope. IEEE Transactions on Nuclear Science, 2006, 53, 466-473.	2.0	21
223	VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog. Astrophysical Journal, 2018, 866, 24.	4.5	21
224	A microstrip gas chamber on a silicon substrate. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 314, 450-454.	1.6	20
225	A photoelectric polarimeter based on a Micropattern Gas Detector for X-ray astronomy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 510, 176-184.	1.6	20
226	Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope. Physical Review D, 2016, 93, 082001.	4.7	20
227	Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar. Science Advances, 2018, 4, eaao7228.	10.3	20
228	Unresolved Gamma-Ray Sky through its Angular Power Spectrum. Physical Review Letters, 2018, 121, 241101.	7.8	20
229	<i>FERMI</i> OBSERVATIONS OF γ-RAY EMISSION FROM THE MOON. Astrophysical Journal, 2012, 758, 140.	4.5	19
230	PSR J1906+0722: AN ELUSIVE GAMMA-RAY PULSAR. Astrophysical Journal Letters, 2015, 809, L2.	8.3	18
231	Sensitivity of a photoelectric x-ray polarimeter for astronomy: the impact of the gas mixture and pressure., 2003, 4843, 394.		17
232	A thin, large area microstrip gas chamber with strip and pad readout. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 336, 106-115.	1.6	16
233	Development of a very large area microstrip gas chamber for the CMS central tracking system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 360, 22-29.	1.6	16
234	Astronomical X-ray polarimetry based on photoelectric effect with microgap detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 469, 164-184.	1.6	16

#	Article	IF	Citations
235	Measurement of the position resolution of the Gas Pixel Detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 700, 99-105.	1.6	16
236	Investigating the Nature of Late-time High-energy GRB Emission through Joint Fermi/Swift Observations. Astrophysical Journal, 2018, 863, 138.	4.5	16
237	X-ray polarimetry with a micro pattern gas detector with pixel readout. IEEE Transactions on Nuclear Science, 2002, 49, 1216-1220.	2.0	15
238	Gamma-ray Large-Area Space Telescope (GLAST) balloon flight engineering model: overview. IEEE Transactions on Nuclear Science, 2002, 49, 1898-1903.	2.0	15
239	Single photon imaging at ultra-high resolution. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 591, 125-128.	1.6	15
240	A set of x-ray polarimeters for the New Hard X-ray Imaging and Polarimetric Mission. Proceedings of SPIE, 2010, , .	0.8	15
241	The background of the gas pixel detector and its impact on imaging X-ray polarimetry. Proceedings of SPIE, 2012, , .	0.8	15
242	Fermi Observations of the LIGO Event GW170104. Astrophysical Journal Letters, 2017, 846, L5.	8.3	15
243	X-Ray Polarimetry of the Crab Nebula with PolarLight: Polarization Recovery after the Glitch and a Secular Position Angle Variation. Astrophysical Journal Letters, 2021, 912, L28.	8.3	15
244	Test-beam study of the performance of the microstrip gas avalanche chamber. IEEE Transactions on Nuclear Science, 1990, 37, 112-118.	2.0	14
245	The silicon-strip tracker of the Gamma ray Large Area Space Telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 512, 136-142.	1.6	14
246	Publisher's Note: Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT [Phys. Rev. D85, 083007 (2012)]. Physical Review D, 2012, 85, .	4.7	14
247	CONSTRAINING THE HIGH-ENERGY EMISSION FROM GAMMA-RAY BURSTS WITH < i > FERMI < /i > . Astrophysical Journal, 2012, 754, 121.	4.5	14
248	Gamma Rays from Fast Black-hole Winds. Astrophysical Journal, 2021, 921, 144.	4.5	14
249	Behaviour of microstrip gas chamber in strong magnetic field. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 343, 441-446.	1.6	13
250	Further test and development of the micro-gap chamber. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 349, 412-417.	1.6	13
251	A very compact polarizer for an x-ray polarimeter calibration. Proceedings of SPIE, 2007, , .	0.8	13
252	<i>>Fermi</i> LARGE AREA TELESCOPE OBSERVATIONS OF BLAZAR 3C 279 OCCULTATIONS BY THE SUN. Astrophysical Journal, 2014, 784, 118.	4.5	13

#	Article	IF	CITATIONS
253	Assembly and test of the gas pixel detector for X-ray polarimetry. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 804, 155-162.	1.6	13
254	A UV light photo-detector based on a MicroGap Chamber with single electron response. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 371, 358-367.	1.6	12
255	Technique for the characterization of discharges in micro-strip gas chambers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 398, 426-428.	1.6	12
256	Techniques and detectors for polarimetry in X-ray astronomy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 510, 170-175.	1.6	12
257	Gas pixel detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 572, 160-167.	1.6	12
258	Time correlation measurements from extensive air showers detected by the EEE telescopes. European Physical Journal Plus, 2013, 128, 1.	2.6	12
259	Operation of MSGCs with gold strips built on surface-treated thin glasses. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 382, 461-469.	1.6	11
260	The CMS micro-strip gas chamber project $\hat{a} \in ``development of a high-resolution tracking detector for harsh radiation environments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 457, 22-42.$	1.6	11
261	The GLAST tracker design and construction. Nuclear Physics, Section B, Proceedings Supplements, 2002, 113, 303-309.	0.4	11
262	The EEE Project: cosmic rays, multigap resistive plate chambers and high school students. Journal of Instrumentation, 2012, 7, T11011-T11011.	1,2	11
263	A two-stage, high gain micro-strip detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 425, 218-227.	1.6	10
264	Micropattern gas detectors: the CMS MSGC project and gaseous pixel detector applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 471, 41-54.	1.6	10
265	Micropattern gas detector for X-ray polarimetry. , 2003, 4843, 372.		10
266	A versatile facility for the calibration of x-ray polarimeters with polarized and unpolarized controlled beams. Proceedings of SPIE, 2008, , .	0.8	10
267	LAMP: a micro-satellite based soft x-ray polarimeter for astrophysics. Proceedings of SPIE, 2015, , .	0.8	10
268	A MWPC with a cathode coupled delay line read-out as radioactivity detector for DNA repair studies. Nuclear Instruments & Methods in Physics Research, 1981, 190, 627-638.	0.9	9
269	Progress with micro-pattern gas detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 478, 13-25.	1.6	9
270	MicroPattern Gas Detectors with pixel read-out. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 513, 231-238.	1.6	9

#	Article	IF	CITATIONS
271	A photoelectric polarimeter for XEUS: a new window in x-ray sky. , 2006, , .		9
272	Preliminary results of the LAT Calibration Unit beam tests. AIP Conference Proceedings, 2007, , .	0.4	9
273	RADIO AND Î ³ -RAY CONSTRAINTS ON THE EMISSION GEOMETRY AND BIRTHPLACE OF PSR J2043+2740. Astrophysical Journal, 2011, 728, 77.	4.5	9
274	Performance of an Ar-DME imaging photoelectric polarimeter. Proceedings of SPIE, 2012, , .	0.8	9
275	A small mission featuring an imaging x-ray polarimeter with high sensitivity. Proceedings of SPIE, 2013,	0.8	9
276	A Search for Cosmic-Ray Proton Anisotropy with the Fermi Large Area Telescope. Astrophysical Journal, 2019, 883, 33.	4.5	9
277	In-orbit operation and performance of the CubeSat Soft X-ray polarimeter PolarLight. Advances in Space Research, 2021, 67, 708-714.	2.6	9
278	The Imaging X-ray Polarimetry Explorer (IXPE): technical overview III., 2020,,.		9
279	A microstrip avalanche chamber with two stages of gas amplification. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 292, 199-200.	1.6	8
280	The MicroGap Chamber: a new detector for the next generation of high energy, high rate experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 368, 259-264.	1.6	8
281	MSGCs with Pestov-glass coatings. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 374, 144-148.	1.6	8
282	Substrate-less, spark-free micro-strip gas counters. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 409, 14-19.	1.6	8
283	XPOL: a photoelectric polarimeter onboard XEUS. Proceedings of SPIE, 2008, , .	0.8	8
284	A new design for the gas pixel detector. , 2012, , .		8
285	A multigap resistive plate chamber array for the Extreme Energy Events project. Journal of Instrumentation, 2014, 9, C10024-C10024.	1.2	8
286	ADAHELI+: exploring the fast, dynamic Sun in theÂx-ray, optical, and near-infrared. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1, 044006.	1.8	8
287	Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications. Medical Physics, 2016, 43, 2118-2130.	3.0	8
288	Performance of the Gas Pixel Detector: an x-ray imaging polarimeter for upcoming missions of astrophysics. Proceedings of SPIE, $2016, , .$	0.8	8

#	Article	IF	CITATIONS
289	The Imaging X-Ray Polarimetry Explorer (IXPE): technical overview II. , 2019, , .		8
290	Test of a CMS MSGC tracker prototype in a high-intensity hadron beam. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 409, 37-42.	1.6	7
291	POLARIX: a small mission of x-ray polarimetry., 2006, 6266, 213.		7
292	X-ray polarimetry with Gas Pixel Detectors: A new window on the X-ray sky. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 576, 183-190.	1.6	7
293	The gas pixel detector as an x-ray photoelectric polarimeter with a large field of view. Proceedings of SPIE, 2008, , .	0.8	7
294	X-ray polarimetry on-board of HXMT. Proceedings of SPIE, 2008, , .	0.8	7
295	The gas pixel detector as a solar X-ray polarimeter and imager. Advances in Space Research, 2012, 49, 143-149.	2.6	7
296	MAGIC and <i>Fermi </i> -LAT gamma-ray results on unassociated HAWC sources. Monthly Notices of the Royal Astronomical Society, 2019, 485, 356-366.	4.4	7
297	Modeling the in-orbit Background of PolarLight. Astrophysical Journal, 2021, 909, 104.	4.5	7
298	Electronic autoradiography of living human cells with a MWPC. Nuclear Instruments & Methods in Physics Research, 1983, 204, 517-523.	0.9	6
299	A large area MicroGap Chamber with two-dimensional read-out. IEEE Transactions on Nuclear Science, 1996, 43, 1237-1242.	2.0	6
300	Fabrication of the GLAST Silicon Tracker Readout Electronics. IEEE Transactions on Nuclear Science, 2006, 53, 3013-3020.	2.0	6
301	The gas pixel detector at the focus of an x-ray optics. Proceedings of SPIE, 2013, , .	0.8	6
302	Bright Gamma-Ray Flares Observed in GRB 131108A. Astrophysical Journal Letters, 2019, 886, L33.	8.3	6
303	Discrimination of background events in the PolarLight X-ray polarimeter. Research in Astronomy and Astrophysics, 2021, 21, 233.	1.7	6
304	Direct screening of living mammalian cell colonies for the identification of DNA repair deficient mutants by a Multiwire Proportional Chamber. Radiation and Environmental Biophysics, 1982, 21, 109-121.	1.4	5
305	Further improvements in the design of a positron camera with dense drift space MWPCs. Nuclear Instruments & Methods in Physics Research, 1983, 217, 89-91.	0.9	5
306	Study of the bunch crossing identification at LHC using microstrip gas chambers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 368, 345-352.	1.6	5

#	Article	IF	Citations
307	Use of the big liquid argon spectrometer BARS for neutrino and cosmic-ray studies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 419, 596-601.	1.6	5
308	Performance of a prototype of the microstrip gas chambers for the CMS experiment at LHC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 409, 70-72.	1.6	5
309	A gas pixel detector for x-ray polarimetry. Nuclear Physics, Section B, Proceedings Supplements, 2006, 150, 358-361.	0.4	5
310	An x-ray polarimeter for HXMT mission. , 2007, , .		5
311	Construction, test and calibration of the GLAST silicon tracker. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 583, 9-13.	1.6	5
312	The GLAST large area telescope: Design, construction, test and calibration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 581, 160-163.	1.6	5
313	Pulsar simulations for the Fermi Large Area Telescope. Astroparticle Physics, 2009, 32, 1-9.	4.3	5
314	Re-testing the JET-X Flight Module No. 2 at the PANTER facility. Experimental Astronomy, 2014, 37, 37-53.	3.7	5
315	FERMI LAT STACKING ANALYSIS OF SWIFT LOCALIZED GRBs. Astrophysical Journal, 2016, 822, 68.	4.5	5
316	A Framework for Iterative Reconstruction in Phase-Contrast Computed Tomography Dedicated to the Breast. IEEE Transactions on Radiation and Plasma Medical Sciences, 2017, 1, 505-510.	3.7	5
317	Performance of a prototype of the CMS central detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 367, 189-192.	1.6	4
318	Gamma-ray Large-Area Space Telescope (GLAST) balloon flight data handling overview. IEEE Transactions on Nuclear Science, 2002, 49, 1904-1908.	2.0	4
319	An x-ray polarimeter for hard x-ray optics. , 2006, , .		4
320	Gas pixel detectors for high-sensitivity x-ray polarimetry. , 2006, , .		4
321	First light from a very large area pixel array for high-throughput x-ray polarimetry., 2006, 6266, 1163.		4
322	The GLAST LAT tracker construction and test. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 570, 276-280.	1.6	4
323	Possible interpretations of the high energy cosmic ray electron spectrum measured with the Fermi space telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 630, 48-51.	1.6	4
324	Edge-illumination X-ray phase contrast imaging: matching the imaging method to the detector technology. Journal of Instrumentation, 2014, 9, C11004-C11004.	1.2	4

#	Article	IF	Citations
325	Cosmic rays Monte Carlo simulations for the Extreme Energy Events Project. European Physical Journal Plus, 2014, 129, 1.	2.6	4
326	Digital Imaging of Regional Glucose Metabolism of the Heart with a MWPC. IEEE Transactions on Nuclear Science, 1983, 30, 686-688.	2.0	3
327	Digital Autoradiography: Film and Electronic Multitracer Techniques for Heart Imaging. IEEE Transactions on Medical Imaging, 1984, 3, 25-33.	8.9	3
328	Tracking properties of the two-stage GEM/Micro-groove detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 454, 315-321.	1.6	3
329	GLAST LAT Full Simulation. Nuclear Physics, Section B, Proceedings Supplements, 2006, 150, 62-65.	0.4	3
330	Environmental tests of the flight GLAST LAT tracker towers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, 584, 358-373.	1.6	3
331	Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 012-012.	5.4	3
332	CONTEMPORANEOUS BROADBAND OBSERVATIONS OF THREE HIGH-REDSHIFT BL LAC OBJECTS. Astrophysical Journal, 2016, 820, 72.	4.5	3
333	Search for New Cosmic-Ray Acceleration Sites within the 4FGL Catalog Galactic Plane Sources. Astrophysical Journal, 2022, 933, 204.	4.5	3
334	DNA-repair deficient cells identification with a multiwire proportional chamber. Physics Letters, Section A: General, Atomic and Solid State Physics, 1982, 92, 154-156.	2.1	2
335	Biomedical applications of MWPCs for digital imaging of soft $\hat{l}^2\hat{a}^2$ emitters. Nuclear Instruments & Methods in Physics Research, 1983, 217, 93-96.	0.9	2
336	High rate tests of microstrip gas chambers for CMS. Nuclear Physics, Section B, Proceedings Supplements, 1999, 78, 80-83.	0.4	2
337	X-ray polarimetry in astrophysics with the Gas Pixel Detector. Journal of Instrumentation, 2009, 4, P11002-P11002.	1.2	2
338	The high-energy detector of the New Hard X-ray Mission (NHXM): design concept. Proceedings of SPIE, 2010, , .	0.8	2
339	Feasibility of X-ray photoelectric polarimeters with large field of view. , 2010, , 72-78.		2
340	Angular resolution of a photoelectric polarimeter. , 2010, , 79-82.		2
341	The Micro-Gap Chamber: new developments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 384, 192-195.	1.6	1
342	The \hat{I}^3 -ray large-area space telescope: An astro-particle mission to explore the high-energy \hat{I}^3 -ray sky. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 572, 500-502.	1.6	1

#	Article	IF	CITATIONS
343	Photoelectric polarimeters. , 0, , 19-33.		1
344	Energy-windowed, pixellated X-ray diffraction using the Pixirad CdTe detector. Journal of Instrumentation, 2017, 12, P01004-P01004.	1.2	1
345	WEâ€Gâ€204â€03: Photonâ€Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels. Medical Physics, 2015, 42, 3694-3694.	3.0	1
346	The Gamma-Ray Large Area Space Telescope: an Astroparticle Mission to Explore the High Energy Sky. , 0,		0
347	The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope. , 0, , .		O
348	Gas Pixel Detectors for low energy X-ray polarimetry. Nuclear Physics, Section B, Proceedings Supplements, 2007, 166, 266-269.	0.4	0
349	Effect of a magnetic field generated by permanent magnets on the GPD polarization sensitivity. Proceedings of SPIE, 2014, , .	0.8	0
350	Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors. Proceedings of SPIE, 2015, , .	0.8	0
351	A framework for iterative reconstruction in phase-contrast computed tomography dedicated to the breast. , $2016, , .$		0