Antonio Agresti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/756496/publications.pdf

Version: 2024-02-01

249298 198040 2,986 64 26 52 citations g-index h-index papers 69 69 69 4361 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synergic use of two-dimensional materials to tailor interfaces in large area perovskite modules. Nano Energy, 2022, 95, 107019.	8.2	16
2	Reevaluation of Photoluminescence Intensity as an Indicator of Efficiency in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	19
3	Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nature Energy, 2022, 7, 597-607.	19.8	66
4	Advances in Perovskites for Photovoltaic Applications in Space. ACS Energy Letters, 2022, 7, 2490-2514.	8.8	27
5	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
6	Laser Processing Optimization for Large-Area Perovskite Solar Modules. Energies, 2021, 14, 1069.	1.6	17
7	Systematic approach to the study of the photoluminescence of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MAPb</mml:mi><mml:msub><mml:mathvariant="normal">I<mml:mn>3</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> . Physical Review Materials, 2021, 5	:mi 0.9	5
8	Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11741-11754.	4.0	45
9	Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy, 2021, 82, 105771.	8.2	74
10	Low-Temperature Graphene-Based Paste for Large-Area Carbon Perovskite Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied & Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied	4.0	39
11	On the scaling of perovskite photovoltaics to modules and panels. , 2021, , .		0
12	Mixed Cation Halide Perovskite under Environmental and Physical Stress. Materials, 2021, 14, 3954.	1.3	14
13	Ag/MgO Nanoparticles via Gas Aggregation Nanocluster Source for Perovskite Solar Cell Engineering. Materials, 2021, 14, 5507.	1.3	4
14	Effects of Crystal Morphology on the Hot-Carrier Dynamics in Mixed-Cation Hybrid Lead Halide Perovskites. Energies, 2021, 14, 708.	1.6	8
15	Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules. ACS Applied Energy Materials, 2021, 4, 98-110.	2.5	9
16	Interface Engineering for Perovskite Solar Cells Based on 2D-Materials: A Physics Point of View. Materials, 2021, 14, 5843.	1.3	7
17	New Insights into the Structure of Glycols and Derivatives: A Comparative X-Ray Diffraction, Raman and Molecular Dynamics Study of Ethane-1,2-Diol, 2-Methoxyethan-1-ol and 1,2-Dimethoxy Ethane. Crystals, 2020, 10, 1011.	1.0	5
18	Effect of Calcination Time on the Physicochemical Properties and Photocatalytic Performance of Carbon and Nitrogen Co-Doped TiO2 Nanoparticles. Catalysts, 2020, 10, 847.	1.6	13

#	Article	IF	Citations
19	Copperâ€Based Corrole as Thermally Stable Hole Transporting Material for Perovskite Photovoltaics. Advanced Functional Materials, 2020, 30, 2003790.	7.8	26
20	Spin Coating Immobilisation of C-N-TiO2 Co-Doped Nano Catalyst on Glass and Application for Photocatalysis or as Electron Transporting Layer for Perovskite Solar Cells. Coatings, 2020, 10, 1029.	1.2	12
21	[1]Benzothieno[3,2â€b][1]benzothiopheneâ€Phthalocyanine Derivatives: A Subclass of Solutionâ€Processable Electronâ€Rich Hole Transport Materials. ChemPlusChem, 2020, 85, 2376-2386.	1.3	16
22	Two-dimensional materials in perovskite solar cells. JPhys Energy, 2020, 2, 031003.	2.3	27
23	Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. Joule, 2020, 4, 865-881.	11.7	125
24	lon Dynamics in Single and Multi-Cation Perovskite. ECS Journal of Solid State Science and Technology, 2020, 9, 065015.	0.9	5
25	Modeling of Halide Perovskite/Ti3C2TX MXenes Solar Cells. , 2019, , .		0
26	Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nature Materials, 2019, 18, 1228-1234.	13.3	418
27	Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 2019, 19, 684-691.	4.5	72
28	Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Letters, 2019, 4, 1862-1871.	8.8	125
29	Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. Materials, 2019, 12, 726.	1.3	39
30	Large area perovskite solar modules with improved efficiency and stability., 2019,,.		5
31	A PdPt decorated SnO -rGO nanohybrid for high-performance resistive sensing of methane. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 438-451.	2.7	23
32	Thermally Induced Fullerene Domain Coarsening Process in Organic Solar Cells. IEEE Transactions on Electron Devices, 2019, 66, 678-688.	1.6	16
33	Graphene Oxide for DSSC, OPV and Perovskite Stability. , 2018, , 503-531.		3
34	Facile synthesis of a SnO2@rGO nanohybrid and optimization of its methane-sensing parameters. Talanta, 2018, 181, 422-430.	2.9	62
35	Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Materials Today Energy, 2018, 9, 1-10.	2.5	48
36	Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42542-42551.	4.0	50

#	Article	IF	Citations
37	Trap states in multication mesoscopic perovskite solar cells: A deep levels transient spectroscopy investigation. Applied Physics Letters, 2018, 113, .	1.5	33
38	Graphene and Related 2D Materials: A Winning Strategy for Enhanced Efficiency and Stability in Perovskite Photovoltaics. , $2018, \ldots$		0
39	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	7. 3	201
40	Wet-Chemical Synthesis of ZnO Nanowires on Low-Temperature Photo-Activated ZnO-rGO Composite Thin Film with Enhanced Photoconduction. Journal of Electronic Materials, 2018, 47, 5863-5869.	1.0	11
41	Graphene-engineered automated sprayed mesoscopic structure for perovskite device scaling-up. 2D Materials, 2018, 5, 045034.	2.0	34
42	XPS depth profiles of organo lead halide layers and full perovskite solar cells by variable-size argon clusters. , $2018, \ldots$		3
43	Study of structural and optical properties of low temperature photo-activated ZnO-rGO composite thin film. Materials Research Bulletin, 2017, 91, 227-231.	2.7	16
44	Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm ² Active Area. ACS Energy Letters, 2017, 2, 279-287.	8.8	196
45	Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells. Applied Surface Science, 2017, 399, 515-522.	3.1	56
46	Grapheneâ€Based Electron Transport Layers in Perovskite Solar Cells: A Stepâ€Up for an Efficient Carrier Collection. Advanced Energy Materials, 2017, 7, 1701349.	10.2	85
47	Stability of dye-sensitized solar cells under extended thermal stress. Physical Chemistry Chemical Physics, 2017, 19, 22546-22554.	1.3	28
48	Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio. IEEE Journal of Photovoltaics, 2017, 7, 1674-1680.	1.5	116
49	Graphene and related 2D materials for high efficient and stable perovskite solar cells. , 2017, , .		8
50	Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithiumâ€Neutralized Graphene Oxide as Electron Transporting Layer. Advanced Functional Materials, 2016, 26, 2686-2694.	7.8	180
51	Mesoscopic Perovskite Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26989-26997.	4.0	44
52	Hybrid perovskite as substituent of indium and gallium in light emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 958-961.	0.8	5
53	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	3.6	163
54	Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy, 2016, 22, 349-360.	8.2	166

#	Article	IF	CITATIONS
55	Stability of dye-sensitized solar cell under reverse bias condition: Resonance Raman spectroscopy combined with spectrally resolved analysis by transmittance and efficiency mapping. Vibrational Spectroscopy, 2016, 84, 106-117.	1.2	20
56	Polyiodides formation in solvent based Dye Sensitized Solar Cells under reverse bias stress. Journal of Power Sources, 2015, 287, 87-95.	4.0	26
57	High efficient perovskite solar cells by employing zinc-phthalocyanine as hole transporting layer. , 2015, , .		4
58	Enhanced stability for dye-sensitized solar cells. , 2015, , .		0
59	Micro-Raman analysis of reverse bias stressed dye-sensitized solar cells. RSC Advances, 2014, 4, 12366.	1.7	25
60	Fabrication and reliability of dye solar cells: A resonance Raman scattering study. Microelectronics Reliability, 2012, 52, 2487-2489.	0.9	15
61	2D material engineering of perovskite solar cells: the emergence of MXenes. , 0, , .		0
62	Two-dimensional MXenes for interface engineering in Perovskite solar cells. , 0, , .		1
63	Halide Perovskite Modules and Panels , 0, , .		0
64	Halide perovskite modules and panels. , 0, , .		0