
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7564694/publications.pdf Version: 2024-02-01



MIHALIS FARIS

| #  | Article                                                                                                                                                                                                                                                  | lF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Benzothiazoles with Tunable Electron-Withdrawing Strength and Reverse Polarity: A Route to<br>Triphenylamine-Based Chromophores with Enhanced Two-Photon Absorption. Journal of Organic<br>Chemistry, 2011, 76, 8726-8736.                               | 3.2  | 138       |
| 2  | Benzothiazole-Based Fluorophores of Donorâ~ï€-Acceptorâ~ï€-Donor Type Displaying High Two-Photon<br>Absorption. Journal of Organic Chemistry, 2010, 75, 3053-3068.                                                                                       | 3.2  | 135       |
| 3  | Two-photon absorption properties of novel organic materials for three-dimensional optical memories. Chemical Physics Letters, 2003, 369, 264-268.                                                                                                        | 2.6  | 78        |
| 4  | Z -scan technique through beam radius measurements. Applied Physics B: Lasers and Optics, 2003, 76, 83-86.                                                                                                                                               | 2.2  | 63        |
| 5  | Porphyrin oriented self-assembled nanostructures for efficient exciton dissociation in high-performing organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 182-192.                                                                        | 10.3 | 60        |
| 6  | Femtosecond Decay and Electron Transfer Dynamics of the Organic Sensitizer D149 and Photovoltaic<br>Performance in Quasi-Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115,<br>13429-13437.                             | 3.1  | 56        |
| 7  | Solutionâ€Processed Hydrogen Molybdenum Bronzes as Highly Conductive Anode Interlayers in<br>Efficient Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1300896.                                                                               | 19.5 | 56        |
| 8  | Intensity dependent nonlinear absorption of pyrylium chromophores. Chemical Physics Letters, 2001, 342, 155-161.                                                                                                                                         | 2.6  | 55        |
| 9  | A two-photon absorption study of fluorene and carbazole derivatives. The role of the central core and the solvent polarity. Chemical Physics Letters, 2007, 447, 300-304.                                                                                | 2.6  | 53        |
| 10 | Quadrupolar Benzobisthiazole-Cored Arylamines as Highly Efficient Two-Photon Absorbing<br>Fluorophores. Organic Letters, 2014, 16, 6358-6361.                                                                                                            | 4.6  | 52        |
| 11 | Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings.<br>Sensors and Actuators A: Physical, 2014, 209, 9-15.                                                                                              | 4.1  | 52        |
| 12 | Atomic‣ayerâ€Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO <sub>2</sub> in<br>Highâ€Efficiency Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1400214.                                                              | 19.5 | 52        |
| 13 | Lithium Doping of ZnO for High Efficiency and Stability Fullerene and Non-fullerene Organic Solar<br>Cells. ACS Applied Energy Materials, 2019, 2, 1663-1675.                                                                                            | 5.1  | 52        |
| 14 | Modulation of (non)linear optical properties in tripodal molecules by variation of the peripheral cyano acceptor moieties and the π-spacer. Journal of Materials Chemistry C, 2015, 3, 7345-7355.                                                        | 5.5  | 47        |
| 15 | Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of<br>hydrogen-doped zinc oxide as electron extraction material. Nano Energy, 2017, 34, 500-514.                                                    | 16.0 | 45        |
| 16 | Excited State and Injection Dynamics of Triphenylamine Sensitizers Containing a Benzothiazole<br>Electron-Accepting Group on TiO <sub>2</sub> and Al <sub>2</sub> O <sub>3</sub> Thin Films. Journal<br>of Physical Chemistry C, 2014, 118, 28509-28519. | 3.1  | 41        |
| 17 | Z-scan analysis for high order nonlinearities through Gaussian decomposition. Optics<br>Communications, 2003, 225, 253-268.                                                                                                                              | 2.1  | 40        |
| 18 | Influence of Aggregates and Solvent Aromaticity on the Emission of Conjugated Polymers. Journal of<br>Physical Chemistry B, 2006, 110, 24897-24902.                                                                                                      | 2.6  | 38        |

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Solvent and branching effect on the two-photon absorption properties of push–pull triphenylamine<br>derivatives. RSC Advances, 2016, 6, 12819-12828.                                                                                                                    | 3.6  | 38        |
| 20 | Novel class of pyrylium dyes with high efficiency in lasing and two-photon absorption fluorescence.<br>Chemical Physics Letters, 2000, 323, 111-116.                                                                                                                    | 2.6  | 36        |
| 21 | Waterâ€Soluble Lacunary Polyoxometalates with Excellent Electron Mobilities and Hole Blocking<br>Capabilities for High Efficiency Fluorescent and Phosphorescent Organic Light Emitting Diodes.<br>Advanced Functional Materials, 2016, 26, 2655-2665.                  | 14.9 | 35        |
| 22 | Surface Modification of ZnO Layers via Hydrogen Plasma Treatment for Efficient Inverted Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 1194-1205.                                                                                               | 8.0  | 35        |
| 23 | Z-scan technique for elliptic Gaussian beams. Applied Physics B: Lasers and Optics, 2003, 77, 71-75.                                                                                                                                                                    | 2.2  | 33        |
| 24 | Triazine-Substituted Zinc Porphyrin as an Electron Transport Interfacial Material for Efficiency<br>Enhancement and Degradation Retardation in Planar Perovskite Solar Cells. ACS Applied Energy<br>Materials, 2018, 1, 3216-3229.                                      | 5.1  | 33        |
| 25 | Highly efficient and unidirectional energy transfer within a tightly self-assembled host–guest<br>multichromophoric array. Chemical Communications, 2014, 50, 1362-1365.                                                                                                | 4.1  | 32        |
| 26 | A time resolved fluorescence and quantum chemical study of the solar cell sensitizer D149. Dyes and Pigments, 2013, 96, 304-312.                                                                                                                                        | 3.7  | 27        |
| 27 | Interfacial electron transfer dynamics and photovoltaic performance of TiO2 and ZnO solar cells sensitized with Coumarin 343. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 226, 42-50.                                                                | 3.9  | 26        |
| 28 | Three-photon induced photobleaching in a three-dimensional memory material. Optics Letters, 2005, 30, 2654.                                                                                                                                                             | 3.3  | 25        |
| 29 | A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO<br>and TiO <sub>2</sub> cathode interlayers for highly efficient and extremely stable polymer solar<br>cells. Journal of Materials Chemistry C, 2018, 6, 1459-1469. | 5.5  | 25        |
| 30 | Luminescent poly(phenylene vinylene) derivatives withm-terphenyl or 2,6-diphenylpyridine kinked<br>segments along the main chain: Synthesis, characterization, and stimulated emission. Journal of<br>Polymer Science Part A, 2004, 42, 2214-2224.                      | 2.3  | 23        |
| 31 | Low Work Function Lacunary Polyoxometalates as Electron Transport Interlayers for Inverted<br>Polymer Solar Cells of Improved Efficiency and Stability. ACS Applied Materials & Interfaces, 2017,<br>9, 22773-22787.                                                    | 8.0  | 23        |
| 32 | Energy transfer and charge separation dynamics in photoexcited pyrene–bodipy molecular dyads.<br>Physical Chemistry Chemical Physics, 2018, 20, 837-849.                                                                                                                | 2.8  | 22        |
| 33 | Formation of a highly-ordered rigid multichromophoric 3D supramolecular network by combining ionic and coordination-driven self-assembly. Chemical Communications, 2016, 52, 3388-3391.                                                                                 | 4.1  | 21        |
| 34 | Strong Two Photon Absorption and Photophysical Properties of Symmetrical Chromophores with Electron Accepting Edge Substituents. Journal of Physical Chemistry A, 2008, 112, 4742-4748.                                                                                 | 2.5  | 20        |
| 35 | The photophysics and two-photon absorption of a series of quadrupolar and tribranched molecules:<br>The role of the edge substituent. Dyes and Pigments, 2009, 81, 63-68.                                                                                               | 3.7  | 20        |
| 36 | Steady state and time resolved photoluminescence properties of CulnS2/ZnS quantum dots in solid films. Journal of Luminescence, 2015, 167, 333-338.                                                                                                                     | 3.1  | 20        |

MIHALIS FAKIS

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Insights into the passivation effect of atomic layer deposited hafnium oxide for efficiency and stability enhancement in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 8051-8059.                                                         | 5.5 | 20        |
| 38 | Photophysics of 9,9â€Dimethylacridanâ€Substituted Phenylstyrylpyrimidines Exhibiting Longâ€Lived<br>Intramolecular Chargeâ€Transfer Fluorescence and Aggregationâ€Induced Emission Characteristics.<br>Chemistry - A European Journal, 2021, 27, 1145-1159. | 3.3 | 20        |
| 39 | Femtosecond to nanosecond studies of octupolar molecules and their quadrupolar and dipolar ana and an analogues. Physical Chemistry Chemical Physics, 2017, 19, 16485-16497.                                                                                | 2.8 | 20        |
| 40 | Direct Iodination of Electron-Deficient Benzothiazoles: Rapid Access to Two-Photon Absorbing<br>Fluorophores with Quadrupolar D-ï€-A-ï€-D Architecture and Tunable Heteroaromatic Core. Organic<br>Letters, 2021, 23, 3460-3465.                            | 4.6 | 19        |
| 41 | Photophysical and electrochemical characterization of new poly(arylene vinylene) copolymers<br>containing quinoline or bisquinoline segments. Journal of Polymer Science Part A, 2009, 47, 3370-3379.                                                       | 2.3 | 18        |
| 42 | Organic solar cells of enhanced efficiency and stability using zinc oxide:zinc tungstate nanocomposite as electron extraction layer. Organic Electronics, 2019, 71, 227-237.                                                                                | 2.6 | 18        |
| 43 | Laser action of two conjugated polymers in solution and in solid matrix: The effect of aggregates on spontaneous and stimulated emission. Physical Review B, 2002, 65, .                                                                                    | 3.2 | 17        |
| 44 | Femtosecond Time Resolved Fluorescence Dynamics of a Cationic Water-Soluble<br>Poly(fluorenevinylene-co-phenylenevinylene). Journal of Physical Chemistry B, 2006, 110, 12926-12931.                                                                        | 2.6 | 17        |
| 45 | Energy transfer within self-assembled cyclic multichromophoric arrays based on orthogonally<br>arranged donor–acceptor building blocks. Faraday Discussions, 2015, 185, 433-454.                                                                            | 3.2 | 17        |
| 46 | Effect of protonation on the photophysical properties of 4-substituted and 4,7-disubstituted quinazoline push-pull chromophores. Dyes and Pigments, 2021, 185, 108948.                                                                                      | 3.7 | 17        |
| 47 | Oxidative C–H Homocoupling of Push–Pull Benzothiazoles: An Atom-Economical Route to Highly<br>Emissive Quadrupolar Arylamine-Functionalized 2,2′-Bibenzothiazoles with Enhanced Two-Photon<br>Absorption. Organic Letters, 2021, 23, 5512-5517.             | 4.6 | 17        |
| 48 | Excited state dynamics of a partially conjugated polymer studied by femtosecond fluorescence upconversion spectroscopy. Chemical Physics Letters, 2004, 394, 372-376.                                                                                       | 2.6 | 16        |
| 49 | Branching effect on the linear and nonlinear optical properties of styrylpyrimidines. Physical<br>Chemistry Chemical Physics, 2020, 22, 4165-4176.                                                                                                          | 2.8 | 16        |
| 50 | Two-photon polymerization of a diacrylate using fluorene photoinitiators–sensitizers. Journal of<br>Photochemistry and Photobiology A: Chemistry, 2010, 215, 25-30.                                                                                         | 3.9 | 15        |
| 51 | Dynamics of Intramolecular Energy Hopping in Multi-Bodipy Self-Assembled Metallocyclic Species: A<br>Tool for Probing Subtle Structural Distortions in Solution. Journal of Physical Chemistry C, 2017, 121,<br>5341-5355.                                  | 3.1 | 15        |
| 52 | Photophysical and Protonation Time Resolved Studies of Donor–Acceptor Branched Systems With<br>Pyridine Acceptors. Journal of Physical Chemistry A, 2019, 123, 417-428.                                                                                     | 2.5 | 15        |
| 53 | Study of the Isotropic and Anisotropic Fluorescence of Two Oligothiophenes by Femtosecond<br>Time-Resolved Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 9476-9481.                                                                             | 2.6 | 13        |
| 54 | Electron injection studies in TiO2 nanocrystalline films sensitized with fluorene dyes and photovoltaic characterization. The effect of co-adsorption of a bile acid derivative. Chemical Physics Letters, 2013, 563, 63-69.                                | 2.6 | 13        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The effect of additional electron donating group on the photophysics and photovoltaic performance of two new metal free D-ï€-A sensitizers. Dyes and Pigments, 2015, 121, 316-327.                                               | 3.7 | 13        |
| 56 | Controlling Pbl <sub>2</sub> Stoichiometry during Synthesis to Improve the Performance of Perovskite Photovoltaics. Chemistry of Materials, 2021, 33, 554-566.                                                                   | 6.7 | 13        |
| 57 | Substituent Effect on the Photobleaching of Pyrylium Salts under Ultrashort Pulsed Illumination.<br>Journal of Physical Chemistry B, 2006, 110, 2593-2597.                                                                       | 2.6 | 12        |
| 58 | Star‣haped Pushâ€Pull Molecules with a Varied Number of Peripheral Acceptors: An Insight into Their<br>Optoelectronic Features. ChemPhotoChem, 2018, 2, 465-474.                                                                 | 3.0 | 12        |
| 59 | Evolution of near-soliton initial conditions in non-linear wave equations through their BĀ <b>e</b> klund<br>transforms. Chaos, Solitons and Fractals, 2005, 23, 1841-1854.                                                      | 5.1 | 11        |
| 60 | Functionalized Zinc Porphyrins with Various Peripheral Groups for Interfacial Electron Injection Barrier Control in Organic Light Emitting Diodes. ACS Omega, 2018, 3, 10008-10018.                                              | 3.5 | 11        |
| 61 | Triphenylamine-based fluorophores bearing peripheral diazine regioisomers. Synthesis,<br>characterization, photophysics and two-photon absorption. Dyes and Pigments, 2022, 201, 110230.                                         | 3.7 | 11        |
| 62 | Electron injection in TiO2 films and quasi-solid state solar cells sensitized with a dipolar fluorene organic dye. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 18-24.                                    | 3.9 | 10        |
| 63 | Conjugated polymer in isolated and aggregated chain environments studied by amplified spontaneous emission. Physical Review B, 2003, 68, .                                                                                       | 3.2 | 9         |
| 64 | Dual amplified spontaneous emission and laser action from a model oligo(phenylene vinylene):<br>comparison with the corresponding polymer. Optical Materials, 2004, 27, 503-507.                                                 | 3.6 | 9         |
| 65 | Photoluminescence properties of porous silicon/fluorene dye composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 252-255.                                                  | 3.5 | 9         |
| 66 | Solvent-Acidity-Driven Change in Photophysics and Significant Efficiency Improvement in<br>Dye-Sensitized Solar Cells of a Benzothiazole-Derived Organic Sensitizer. Journal of Physical<br>Chemistry C, 2018, 122, 20122-20134. | 3.1 | 9         |
| 67 | Ultrafast fluorescence dynamics of Sybr Green I/DNA complexes. Chemical Physics Letters, 2010, 485, 187-190.                                                                                                                     | 2.6 | 8         |
| 68 | Ultrafast solvation and anisotropy dynamics in a tri-branched molecule based on a triphenylamine core. Dyes and Pigments, 2010, 87, 44-48.                                                                                       | 3.7 | 8         |
| 69 | Synthesis of two tri-arylamine derivatives as sensitizers in dye-sensitized solar cells: Electron injection studies and photovoltaic characterization. Synthetic Metals, 2014, 188, 77-85.                                       | 3.9 | 8         |
| 70 | Improved Stability of Polymer Solar Cells in Ambient Air via Atomic Layer Deposition of Ultrathin<br>Dielectric Layers. Advanced Materials Interfaces, 2017, 4, 1700231.                                                         | 3.7 | 8         |
| 71 | The effect of protonation on the excited state dynamics of pyrimidine chromophores. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112398.                                                                  | 3.9 | 8         |
| 72 | Excitation energy transfer in a cationic water-soluble conjugated co-polymer studied by time resolved anisotropy and fluorescence dynamics. Chemical Physics Letters, 2006, 421, 205-209.                                        | 2.6 | 7         |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fluorescence and anisotropy dynamics of a CHO substituted terthiophene. Synthetic Metals, 2007, 157, 30-34.                                                                                | 3.9 | 7         |
| 74 | Carbon nanotube–fluorenevinylene hybrids: Synthesis and photophysical properties. Chemical Physics<br>Letters, 2009, 483, 241-246.                                                         | 2.6 | 7         |
| 75 | Energy transfer in aggregated CuInS <sub>2</sub> /ZnS core-shell quantum dots deposited as solid films. Journal Physics D: Applied Physics, 2017, 50, 035107.                              | 2.8 | 5         |
| 76 | Photophysics, electronic structure and solar cell performance of a donor-acceptor<br>poly(N-dodecyl-2,7-carbazole-alt-benzothiadiazole) copolymer. Organic Electronics, 2018, 59, 202-212. | 2.6 | 4         |
| 77 | Excitation/detection energy controlled anisotropy dynamics in asymmetrically cyano substituted tri-podal molecules. Physical Chemistry Chemical Physics, 2020, 22, 16681-16690.            | 2.8 | 4         |
| 78 | Examination of the Spatial Distribution of Dyes and Polymers in Thin Films by Two-Photon Microscopy.<br>Monatshefte Für Chemie, 2001, 132, 169-175.                                        | 1.8 | 3         |
| 79 | Commercially available chromophores as low-cost efficient electron injection layers for organic light emitting diodes. Journal Physics D: Applied Physics, 2022, 55, 215106.               | 2.8 | 3         |
| 80 | Photoluminescence in the blue spectral region from fluorene molecules embedded in porous anodic alumina thin films on silicon. Optical Materials, 2009, 31, 1184-1188.                     | 3.6 | 2         |
| 81 | Cooperative Self-Assembly Enables Two-Dimensional H-type Aggregation of a Sterically Crowded Perylene-Bisimide Dimer. Crystal Growth and Design, 2019, 19, 4252-4263.                      | 3.0 | 1         |