Fang Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7564575/publications.pdf

Version: 2024-02-01

430874 580821 25 25 912 18 citations h-index g-index papers 25 25 25 751 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Copperâ€Catalyzed Regioselective [3+3] Annulations of Alkynyl Ketimines with <i>α</i> â€Cyano Ketones: the Synthesis of Polysubstituted 4 <i>H</i> â€Pyran Derivatives with a CF ₃ â€Containing Quaternary Center. Chemistry - A European Journal, 2022, 28, .	3.3	3
2	Ir-catalyzed asymmetric hydrogenation of 3-arylindenones for the synthesis of chiral 3-arylindanones. Tetrahedron, 2021, 84, 132003.	1.9	9
3	Benzylamine as Hydrogen Transfer Agent: Cobaltâ€Catalyzed Chemoselective C=C Bond Reduction of βâ€Trifluoromethylated α,βâ€Unsaturated Ketones via 1,5â€Hydrogen Transfer. Chemistry - an Asian Journal, 2019, 14, 3835-3839.	3.3	9
4	A Copper-Catalyzed Reductive Defluorination of \hat{l}^2 -Trifluoromethylated Enones via Oxidative Homocoupling of Grignard Reagents. Organic Letters, 2018, 20, 1638-1642.	4.6	57
5	Ni(II)/mono-RuPHOX-catalyzed asymmetric addition of alkenylboronic acids to cyclic aldimines. Tetrahedron Letters, 2018, 59, 1573-1575.	1.4	9
6	DFT Study of the Strong Solvent Effects in the Cuâ€Catalyzed Asymmetric Conjugate Addition Reaction. Journal of the Chinese Chemical Society, 2018, 65, 346-351.	1.4	2
7	A Ferrocene-Based NH-Free Phosphine-Oxazoline Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones. Organic Letters, 2018, 20, 6135-6139.	4.6	41
8	Copper (II)/RuPHOX atalyzed Enantioselective Mannichâ€Type Reaction of Glycine Schiff Bases with Cyclic Ketimines. Advanced Synthesis and Catalysis, 2018, 360, 4625-4633.	4.3	25
9	Copper-catalyzed asymmetric alkynylation of cyclic N-sulfonyl ketimines. Chemical Communications, 2017, 53, 5364-5367.	4.1	46
10	Regio―and Enantioselective Copperâ€Catalyzed 1,4â€Conjugate Addition of Trimethylaluminium to Linear α,β,γ,Îîâ€Unsaturated Alkyl Ketones. Advanced Synthesis and Catalysis, 2016, 358, 2510-2518.	4.3	15
11	Pd(<scp>ii</scp>)-catalyzed asymmetric addition of arylboronic acids to cyclic N-sulfonyl ketimine esters and a DFT study of its mechanism. Organic Chemistry Frontiers, 2015, 2, 398-402.	4.5	73
12	Palladium-Catalyzed Asymmetric Addition of Arylboronic Acids to Nitrostyrenes. Organic Letters, 2015, 17, 2250-2253.	4.6	51
13	Chiral Bicyclic Imidazole Nucleophilic Catalysts: Design, Synthesis, and Application to the Kinetic Resolution of Arylalkylcarbinols. Advanced Synthesis and Catalysis, 2014, 356, 3164-3170.	4.3	25
14	Copper-catalyzed asymmetric 1,4-conjugate addition of Grignard reagents to linear $\hat{l}_{\pm},\hat{l}_{-},$	4.1	29
15	The effects of solvent on switchable stereoselectivity: copper-catalyzed asymmetric conjugate additions using D2-symmetric biphenyl phosphoramidite ligands. Organic and Biomolecular Chemistry, 2012, 10, 5137.	2.8	34
16	Switchable Stereoselectivity: The Effects of Substituents on the ⟨i⟩D⟨sub⟩2⟨ sub⟩⟨ i⟩â€Symmetric Biphenyl Backbone of Phosphoramidites in Copperâ€Catalyzed Asymmetric Conjugate Addition Reactions with Triethylaluminium. Advanced Synthesis and Catalysis, 2012, 354, 1941-1947.	4.3	22
17	Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes. Organic and Biomolecular Chemistry, 2011, 9, 1871.	2.8	92
18	Iridium-catalyzed asymmetric hydrogenation of 3-substituted unsaturated oxindoles to prepare C3-mono substituted oxindoles. Tetrahedron, 2011, 67, 8445-8450.	1.9	34

#	ARTICLE	lF	CITATION
19	Enantioselective synthesis of chiral \hat{l}^3 -aryl \hat{l}^\pm -keto ester by copper-catalyzed 1,4-conjugate addition using D2-symmetric biphenyl phosphoramidite ligand. Tetrahedron, 2011, 67, 6197-6201.	1.9	22
20	Iridiumâ€Catalyzed Highly Enantioselective Hydrogenation of Exocyclic α,βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2010, 352, 1841-1845.	4.3	105
21	Highly enantioselective copper-catalyzed allylic alkylation with atropos phosphoramidites bearing a D2-symmetric biphenyl backbone. Tetrahedron, 2010, 66, 3593-3598.	1.9	18
22	From C2- to D2-symmetry: atropos phosphoramidites with a D2-symmetric backbone as highly efficient ligands in Cu-catalyzed conjugate additions. Tetrahedron Letters, 2010, 51, 3119-3122.	1.4	27
23	Novel <i>C</i> ₂ -Symmetric Planar Chiral Diphosphine Ligands and Their Application in Pd-Catalyzed Asymmetric Allylic Substitutions. Journal of Organic Chemistry, 2007, 72, 6992-6997.	3.2	52
24	The synthesis of novel C2-symmetric P,N-chelation ruthenocene ligands and their application in palladium-catalyzed asymmetric allylic substitution. Tetrahedron Letters, 2007, 48, 585-588.	1.4	45
25	Palladium-catalyzed asymmetric allylic alkylation with an enamine as the nucleophilic reagent. Tetrahedron Letters, 2007, 48, 7591-7594.	1.4	67