Tania K Lind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7564131/publications.pdf

Version: 2024-02-01

516710 752698 20 702 16 20 h-index citations g-index papers 20 20 20 1215 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Scientific Reports, 2018, 8, 6327.	3.3	97
2	Composition and structure of mixed phospholipid supported bilayers formed by POPC and DPPC. Soft Matter, 2012, 8, 5658.	2.7	77
3	Formation of Supported Lipid Bilayers by Vesicle Fusion: Effect of Deposition Temperature. Langmuir, 2014, 30, 7259-7263.	3.5	73
4	Understanding the formation of supported lipid bilayers via vesicle fusion—A case that exemplifies the need for the complementary method approach (Review). Biointerphases, 2016, 11, 020801.	1.6	63
5	Formation and Characterization of Supported Lipid Bilayers Composed of Hydrogenated and Deuterated Escherichia coli Lipids. PLoS ONE, 2015, 10, e0144671.	2.5	47
6	Unraveling Dendrimer Translocation Across Cell Membrane Mimics. Langmuir, 2012, 28, 13025-13033.	3.5	42
7	Continuous Flow Atomic Force Microscopy Imaging Reveals Fluidity and Time-Dependent Interactions of Antimicrobial Dendrimer with Model Lipid Membranes. ACS Nano, 2014, 8, 396-408.	14.6	38
8	Localization of Cholesterol within Supported Lipid Bilayers Made of a Natural Extract of Tailor-Deuterated Phosphatidylcholine. Langmuir, 2018, 34, 472-479.	3.5	36
9	Non-specific interactions between soluble proteins and lipids induce irreversible changes in the properties of lipid bilayers. Soft Matter, 2013, 9, 4219-4226.	2.7	34
10	Modeling Small-Angle X-ray Scattering Data for Low-Density Lipoproteins: Insights into the Fatty Core Packing and Phase Transition. ACS Nano, 2017, 11, 1080-1090.	14.6	25
11	Formation and Characterization of Supported Lipid Bilayers Composed of Phosphatidylethanolamine and Phosphatidylglycerol by Vesicle Fusion, a Simple but Relevant Model for Bacterial Membranes. ACS Omega, 2019, 4, 10687-10694.	3.5	25
12	On the Antimicrobial Activity of Various Peptide-Based Dendrimers of Similar Architecture. Molecules, 2015, 20, 738-753.	3.8	24
13	A biophysical study of the interactions between the antimicrobial peptide indolicidin and lipid model systems. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1355-1364.	2.6	24
14	Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films. Nano Letters, 2017, 17, 476-485.	9.1	22
15	Towards biomimics of cell membranes: Structural effect of phosphatidylinositol triphosphate (PIP3) on a lipid bilayer. Colloids and Surfaces B: Biointerfaces, 2019, 173, 202-209.	5.0	22
16	Time-resolved small-angle neutron scattering as a probe for the dynamics of lipid exchange between human lipoproteins and naturally derived membranes. Scientific Reports, 2019, 9, 7591.	3.3	19
17	Lipoprotein ability to exchange and remove lipids from model membranes as a function of fatty acid saturation and presence of cholesterol. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158769.	2.4	12
18	Effect of bilayer charge on lipoprotein lipid exchange. Colloids and Surfaces B: Biointerfaces, 2018, 168, 117-125.	5.0	11

Tania K Lind

#	Article	lF	CITATIONS
19	Mechanisms of crystallisation in polysorbates and sorbitan esters. CrystEngComm, 2020, 22, 3840-3853.	2.6	6
20	Effects of ethylene oxide chain length on crystallization of polysorbate 80 and its related compounds. Journal of Colloid and Interface Science, 2021, 592, 468-484.	9.4	5