
Ana Rita Cruz Duarte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7563841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contributions of supercritical fluid technology for advancing decellularization and postprocessing of viable biological materials. Materials Horizons, 2022, 9, 864-891.	6.4	17
2	Simultaneous Hydrolysis of Ellagitannins and Extraction of Ellagic Acid from Defatted Raspberry Seeds Using Natural Deep Eutectic Solvents (NADES). Antioxidants, 2022, 11, 254.	2.2	15
3	Fractionated extraction of polyphenols from mate tea leaves using a combination of hydrophobic/ hydrophilic NADES. Current Research in Food Science, 2022, 5, 571-580.	2.7	8
4	Combination drug delivery approaches for tuberculosis. , 2022, , 173-210.		0
5	Deep Eutectic Solvents as Phase Change Materials in Solar Thermal Power Plants: Energy and Exergy Analyses. Molecules, 2022, 27, 1427.	1.7	4
6	Natural Deep Eutectic Solvent (NADES) Extraction Improves Polyphenol Yield and Antioxidant Activity of Wild Thyme (Thymus serpyllum L.) Extracts. Molecules, 2022, 27, 1508.	1.7	29
7	Structure and Dynamic Properties of a Glycerol–Betaine Deep Eutectic Solvent: When Does a DES Become an Aqueous Solution?. ACS Sustainable Chemistry and Engineering, 2022, 10, 3501-3512.	3.2	13
8	Assessment of deep eutectic solvents toxicity in zebrafish (Danio rerio). Chemosphere, 2022, 299, 134415.	4.2	7
9	Extraction of Bioactive Compounds From Cannabis sativa L. Flowers and/or Leaves Using Deep Eutectic Solvents. Frontiers in Nutrition, 2022, 9, 892314.	1.6	8
10	Selective terpene based therapeutic deep eutectic systems against colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 175, 13-26.	2.0	9
11	Use of natural deep eutectic systems as new cryoprotectant agents in the vitrification of mammalian cells. Scientific Reports, 2022, 12, 8095.	1.6	9
12	Current methodologies for the assessment of deep eutectic systems toxicology: Challenges and perspectives. Journal of Molecular Liquids, 2022, 362, 119675.	2.3	6
13	Supported liquid membranes based on deep eutectic solvents for gas separation processes. Separation and Purification Technology, 2021, 254, 117593.	3.9	56
14	Natural deep eutectic systems for <scp>natureâ€inspired</scp> cryopreservation of cells. AICHE Journal, 2021, 67, e17085.	1.8	22
15	A look on target-specificity of eutectic systems based on natural bioactive compounds. Advances in Botanical Research, 2021, 97, 271-307.	0.5	8
16	Untangling the bioactive properties of therapeutic deep eutectic solvents based on natural terpenes. Current Research in Chemical Biology, 2021, 1, 100003.	1.4	15
17	Unravelling the nature of citric acid: <scp>l</scp> -arginine:water mixtures: the bifunctional role of water. Physical Chemistry Chemical Physics, 2021, 23, 1706-1717.	1.3	20
18	Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents. Scientific Reports, 2021, 11, 6684.	1.6	24

#	Article	IF	CITATIONS
19	Molecular Dynamics Studies of Therapeutic Liquid Mixtures and Their Binding to Mycobacteria. Frontiers in Pharmacology, 2021, 12, 626735.	1.6	4
20	The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules, 2021, 26, 2336.	1.7	30
21	Influence of natural deep eutectic systems in water thermal behavior and their applications in cryopreservation. Journal of Molecular Liquids, 2021, 329, 115533.	2.3	16
22	Improved storage of influenza HA-VLPs using a trehalose-glycerol natural deep eutectic solvent system. Vaccine, 2021, 39, 3279-3286.	1.7	8
23	Volumetric investigation of aqueous mixtures of the {choline chlorideÂ+Âphenol (1:4)} deep eutectic solvent. Journal of Chemical Thermodynamics, 2021, 158, 106440.	1.0	9
24	Deep eutectic systems from betaine and polyols – Physicochemical and toxicological properties. Journal of Molecular Liquids, 2021, 335, 116201.	2.3	28
25	Natural deep eutectic systems, an emerging class of cryoprotectant agents. Cryobiology, 2021, 101, 95-104.	0.3	28
26	Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures. Molecules, 2021, 26, 5779.	1.7	23
27	Effect of water on the structure and dynamics of choline chloride/glycerol eutectic systems. Journal of Molecular Liquids, 2021, 342, 117463.	2.3	41
28	Unveiling the potential of betaine/polyol-based deep eutectic systems for the recovery of bioactive protein derivative-rich extracts from sardine processing residues. Separation and Purification Technology, 2021, 276, 119267.	3.9	14
29	Natural deep eutectic systems—A new era of cryopreservation. Advances in Botanical Research, 2021, , 385-409.	0.5	3
30	Therapeutic Liquid Formulations Based on Low Transition Temperature Mixtures for the Incorporation of Anti-Inflammatory Drugs. Pharmaceutics, 2021, 13, 1620.	2.0	3
31	Low-Phytotoxic Deep Eutectic Systems as Alternative Extraction Media for the Recovery of Chitin from Brown Crab Shells. ACS Omega, 2021, 6, 28729-28741.	1.6	19
32	Natural deep eutectic systems for nature-inspired cryopreservation of cells. AICHE Journal, 2021, 67, .	1.8	1
33	Evaluation of Deep Eutectic Systems as an Alternative to Solvents in Painting Conservation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15451-15460.	3.2	11
34	Therapeutic Deep Eutectic Systems towards the Treatment of Tuberculosis and Colorectal Cancer: Opportunities and Challenges. Molecules, 2021, 26, 7022.	1.7	12
35	Optimal Design of THEDES Based on Perillyl Alcohol and Ibuprofen. Pharmaceutics, 2020, 12, 1121.	2.0	18
36	Advancing spinal fusion: Interbody stabilization by in situ foaming of a chemically modified polycaprolactone. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1465-1475.	1.3	2

#	Article	IF	CITATIONS
37	Organic Salts Based on Isoniazid Drug: Synthesis, Bioavailability and Cytotoxicity Studies. Pharmaceutics, 2020, 12, 952.	2.0	5
38	A simple model for the viscosities of deep eutectic solvents. Fluid Phase Equilibria, 2020, 521, 112662.	1.4	44
39	Design and processing of drug delivery formulations of therapeutic deep eutectic systems for tuberculosis. Journal of Supercritical Fluids, 2020, 161, 104826.	1.6	31
40	A general model for the surface tensions of deep eutectic solvents. Journal of Molecular Liquids, 2020, 307, 112972.	2.3	30
41	Generalized Model to Estimate the Refractive Indices of Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 3965-3976.	1.0	14
42	Collagen from Atlantic cod (Gadus morhua) skins extracted using CO2 acidified water with potential application in healthcare. Journal of Polymer Research, 2020, 27, 1.	1.2	44
43	Terpene-Based Natural Deep Eutectic Systems as Efficient Solvents To Recover Astaxanthin from Brown Crab Shell Residues. ACS Sustainable Chemistry and Engineering, 2020, 8, 2246-2259.	3.2	66
44	Investigating the performance of novel green solvents in absorption refrigeration cycles: Energy and exergy analyses. International Journal of Refrigeration, 2020, 113, 174-186.	1.8	24
45	Energy Conservation in Absorption Refrigeration Cycles Using DES as a New Generation of Green Absorbents. Entropy, 2020, 22, 409.	1.1	14
46	A Global Model for the Estimation of Speeds of Sound in Deep Eutectic Solvents. Molecules, 2020, 25, 1626.	1.7	8
47	Estimation of the heat capacities of deep eutectic solvents. Journal of Molecular Liquids, 2020, 307, 112940.	2.3	29
48	Unveil the Anticancer Potential of Limomene Based Therapeutic Deep Eutectic Solvents. Scientific Reports, 2019, 9, 14926.	1.6	60
49	Simple and global correlation for the densities of deep eutectic solvents. Journal of Molecular Liquids, 2019, 296, 111830.	2.3	42
50	Preparation of Binary and Ternary Deep Eutectic Systems. Journal of Visualized Experiments, 2019, , .	0.2	10
51	Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Applied Bio Materials, 2019, 2, 4346-4355.	2.3	96
52	Polymer Science and Engineering Using Deep Eutectic Solvents. Polymers, 2019, 11, 912.	2.0	86
53	Development of innovative medical devices by dispersing fatty acid eutectic blend on gauzes using supercritical particle generation processes. Materials Science and Engineering C, 2019, 99, 599-610.	3.8	22
54	Deep Eutectic Solvents for Enzymatic Esterification of Racemic Menthol. ACS Sustainable Chemistry and Engineering, 2019, 7, 19943-19950.	3.2	39

#	Article	IF	CITATIONS
55	A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustainable Chemistry and Pharmacy, 2019, 14, 100192.	1.6	36
56	Properties of Therapeutic Deep Eutectic Solvents of l-Arginine and Ethambutol for Tuberculosis Treatment. Molecules, 2019, 24, 55.	1.7	39
57	Supercritical Fluid Technology as a Tool to Prepare Gradient Multifunctional Architectures Towards Regeneration of Osteochondral Injuries. Advances in Experimental Medicine and Biology, 2018, 1058, 265-278.	0.8	4
58	Engineered tubular structures based on chitosan for tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 841-852.	1.2	12
59	In vivo assessment of a novel biodegradable ureteral stent. World Journal of Urology, 2018, 36, 277-283.	1.2	47
60	16th European Meeting on Supercritical Fluids, EMSF 2017 Preface. Journal of Supercritical Fluids, 2018, 141, 1.	1.6	1
61	Subcritical carbon dioxide foaming of polycaprolactone for bone tissue regeneration. Journal of Supercritical Fluids, 2018, 140, 1-10.	1.6	20
62	How do we drive deep eutectic systems towards an industrial reality?. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 81-85.	3.2	39
63	Natural deep eutectic systems as alternative nontoxic cryoprotective agents. Cryobiology, 2018, 83, 15-26.	0.3	89
64	Design of Functional Therapeutic Deep Eutectic Solvents Based on Choline Chloride and Ascorbic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 10355-10363.	3.2	93
65	Synthesis and Physical and Thermodynamic Properties of Lactic Acid and Malic Acid-Based Natural Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2018, 63, 2548-2556.	1.0	37
66	Chapter 2. Chitin/Chitosan Based Aerogels: Processing and Morphology. RSC Green Chemistry, 2018, , 9-24.	0.0	1
67	Mimicking Nature In Cryopreservation. , 2018, , .		0
68	InÂVitro and ExÂVivo Permeability Studies of Paclitaxel and Doxorubicin From Drug-Eluting Biodegradable Ureteral Stents. Journal of Pharmaceutical Sciences, 2017, 106, 1466-1474.	1.6	15
69	Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech, 2017, 18, 2579-2585.	1.5	42
70	A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 296-304.	2.0	162
71	Natural deep eutectic solvents from choline chloride and betaine – Physicochemical properties. Journal of Molecular Liquids, 2017, 241, 654-661.	2.3	194
72	Biomaterials and Bioactive Agents in Spinal Fusion. Tissue Engineering - Part B: Reviews, 2017, 23, 540-551.	2.5	39

#	Article	IF	CITATIONS
73	Green solvents for enhanced impregnation processes in biomedicine. Current Opinion in Green and Sustainable Chemistry, 2017, 5, 82-87.	3.2	33
74	Preparation of barley and yeast Î ² -glucan scaffolds by hydrogel foaming: Evaluation of dexamethasone release. Journal of Supercritical Fluids, 2017, 127, 158-165.	1.6	8
75	Development of barley and yeast β-glucan aerogels for drug delivery by supercritical fluids. Journal of CO2 Utilization, 2017, 22, 262-269.	3.3	50
76	How Do Animals Survive Extreme Temperature Amplitudes? The Role of Natural Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 9542-9553.	3.2	79
77	Bioinspiring Chondrosia reniformis (Nardo, 1847) Collagen-Based Hydrogel: A New Extraction Method to Obtain a Sticky and Self-Healing Collagenous Material. Marine Drugs, 2017, 15, 380.	2.2	22
78	From Honeycomb- to Microsphere-Patterned Surfaces of Poly(Lactic Acid) and a Starch-Poly(Lactic) Tj ETQq0 0 0 r 2017, 15, 31-42.	gBT /Over 0.7	lock 10 Tf 5
79	<i>In vitro</i> bioactivity studies of ceramic structures isolated from marine sponges. Biomedical Materials (Bristol), 2016, 11, 045004.	1.7	16
80	Gelatin-based biodegradable ureteral stents with enhanced mechanical properties. Applied Materials Today, 2016, 5, 9-18.	2.3	40
81	Drug-eluting biodegradable ureteral stent: New approach for urothelial tumors of upper urinary tract cancer. International Journal of Pharmaceutics, 2016, 513, 227-237.	2.6	58
82	Hybrid Alginateâ€Based Cryogels for Life Science Applications. Chemie-Ingenieur-Technik, 2016, 88, 1770-1778.	0.4	15
83	Extraction of Collagen/Gelatin from the Marine Demosponge <i>Chondrosia reniformis</i> (Nardo,) Tj ETQq1 1 0. Chemistry Research, 2016, 55, 6922-6930.	784314 rg 1.8	gBT /Overloc 59
84	Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids, 2016, 215, 534-540.	2.3	277
85	Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 57-66.	2.0	164
86	Preparation of macroporous alginate-based aerogels for biomedical applications. Journal of Supercritical Fluids, 2015, 106, 152-159.	1.6	129
87	Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. Journal of Supercritical Fluids, 2015, 105, 1-8.	1.6	175
88	Cork processing with supercritical carbon dioxide: Impregnation and sorption studies. Journal of Supercritical Fluids, 2015, 104, 251-258.	1.6	10
89	Design of controlled release systems for THEDES—Therapeutic deep eutectic solvents, using supercritical fluid technology. International Journal of Pharmaceutics, 2015, 492, 73-79.	2.6	139
90	Bioresorbable ureteral stents from natural origin polymers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 608-617.	1.6	46

#	Article	IF	CITATIONS
91	Production of Poly(vinyl alcohol) (PVA) Fibers with Encapsulated Natural Deep Eutectic Solvent (NADES) Using Electrospinning. ACS Sustainable Chemistry and Engineering, 2015, 3, 2504-2509.	3.2	35
92	Ketoprofen-eluting biodegradable ureteral stents by CO2 impregnation: In vitro study. International Journal of Pharmaceutics, 2015, 495, 651-659.	2.6	36
93	Water and Carbon Dioxide: Green Solvents for the Extraction of Collagen/Gelatin from Marine Sponges. ACS Sustainable Chemistry and Engineering, 2015, 3, 254-260.	3.2	50
94	Platelet lysate membranes as new autologous templates for tissue engineering applications. Inflammation and Regeneration, 2014, 34, 033-044.	1.5	28
95	Microfluidic Production of Perfluorocarbon-Alginate Core–Shell Microparticles for Ultrasound Therapeutic Applications. Langmuir, 2014, 30, 12391-12399.	1.6	37
96	Nanostructured Hollow Tubes Based on Chitosan and Alginate Multilayers. Advanced Healthcare Materials, 2014, 3, 433-440.	3.9	48
97	Supercritical fluid processing of natural based polymers doped with ionic liquids. Chemical Engineering Journal, 2014, 241, 122-130.	6.6	14
98	Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustainable Chemistry and Engineering, 2014, 2, 1063-1071.	3.2	1,598
99	Starch-based polymer–IL composites formed by compression moulding and supercritical fluid foaming for self-supported conductive materials. RSC Advances, 2014, 4, 17161.	1.7	11
100	Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate. Biomacromolecules, 2014, 15, 3817-3826.	2.6	88
101	Surface Modification of Silica-Based Marine Sponge Bioceramics Induce Hydroxyapatite Formation. Crystal Growth and Design, 2014, 14, 4545-4552.	1.4	12
102	Enhanced performance of supercritical fluid foaming of naturalâ€based polymers by deep eutectic solvents. AICHE Journal, 2014, 60, 3701-3706.	1.8	29
103	Design and functionalization of chitin-based microsphere scaffolds. Green Chemistry, 2013, 15, 3252.	4.6	45
104	Porous Hydrogels From Shark Skin Collagen Crosslinked Under Dense Carbon Dioxide Atmosphere. Macromolecular Bioscience, 2013, 13, 1621-1631.	2.1	37
105	Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. Journal of Supercritical Fluids, 2013, 79, 177-185.	1.6	48
106	Alternative methodology for chitin–hydroxyapatite composites using ionic liquids and supercritical fluid technology. Journal of Bioactive and Compatible Polymers, 2013, 28, 481-491.	0.8	28
107	Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure. Tissue Engineering - Part A, 2012, 18, 1979-1991.	1.6	79
108	The role of organic solvent on the preparation of chitosan scaffolds by supercritical assisted phase inversion. Journal of Supercritical Fluids, 2012, 72, 326-332.	1.6	28

#	Article	IF	CITATIONS
109	Ionic liquids as foaming agents of semi-crystalline natural-based polymers. Green Chemistry, 2012, 14, 1949.	4.6	21
110	PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. Journal of Supercritical Fluids, 2012, 65, 32-38.	1.6	66
111	Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. Journal of Controlled Release, 2012, 162, 19-27.	4.8	78
112	Thermosensitive polymeric matrices for three-dimensional cell culture strategies. Acta Biomaterialia, 2011, 7, 526-529.	4.1	18
113	Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia, 2011, 7, 1166-1172.	4.1	114
114	Supercritical phase inversion of starch-poly(ε-caprolactone) for tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2010, 21, 533-540.	1.7	11
115	Enzymatic degradation of 3D scaffolds of starch-poly-(É›-caprolactone) prepared by supercritical fluid technology. Polymer Degradation and Stability, 2010, 95, 2110-2117.	2.7	29
116	Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution. International Journal of Greenhouse Gas Control, 2010, 4, 798-805.	2.3	53
117	Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials, 2010, 31, 5875-5885.	5.7	160
118	Development of therapeutic contact lenses using a supercritical solvent impregnation method. Journal of Supercritical Fluids, 2010, 52, 306-316.	1.6	97
119	Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: Preparation and characterization. Journal of Supercritical Fluids, 2010, 54, 282-289.	1.6	72
120	Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. Journal of Supercritical Fluids, 2010, 54, 320-327.	1.6	64
121	Supercritical fluids in biomedical and tissue engineering applications: a review. International Materials Reviews, 2009, 54, 214-222.	9.4	99
122	Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. Journal of Supercritical Fluids, 2009, 49, 279-285.	1.6	76
123	Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Materials Science and Engineering C, 2009, 29, 2110-2115.	3.8	37
124	Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. European Polymer Journal, 2009, 45, 141-148.	2.6	111
125	Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta Biomaterialia, 2009, 5, 2054-2062.	4.1	82
126	Phase Equilibrium Measurements of Structure sH Hydrogen Clathrate Hydrates with Various Promoters. Journal of Chemical & Engineering Data, 2009, 54, 1628-1632.	1.0	32

#	Article	IF	CITATIONS
127	Perspectives on: Supercritical Fluid Technology for 3D Tissue Engineering Scaffold Applications. Journal of Bioactive and Compatible Polymers, 2009, 24, 385-400.	0.8	55
128	Water Cavities of sH Clathrate Hydrate Stabilized by Molecular Hydrogen:  Phase Equilibrium Measurements. Journal of Physical Chemistry B, 2008, 112, 1888-1889.	1.2	57
129	Impregnation of an Intraocular Lens for Ophthalmic Drug Delivery. Current Drug Delivery, 2008, 5, 102-107.	0.8	34
130	Supercritical fluid impregnation of a biocompatible polymer for ophthalmic drug delivery. Journal of Supercritical Fluids, 2007, 42, 373-377.	1.6	59
131	Supercritical antisolvent precipitation of PHBV microparticles. International Journal of Pharmaceutics, 2007, 328, 72-77.	2.6	47
132	Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques. International Journal of Pharmaceutics, 2007, 332, 132-139.	2.6	46
133	Solubility of carbon dioxide in a natural biodegradable polymer: Determination of diffusion coefficients. Journal of Supercritical Fluids, 2007, 40, 194-199.	1.6	29
134	Solubility of dense CO2 in two biocompatible acrylate copolymers. Brazilian Journal of Chemical Engineering, 2006, 23, 191-196.	0.7	1
135	Preparation of controlled release microspheres using supercritical fluid technology for delivery of anti-inflammatory drugs. International Journal of Pharmaceutics, 2006, 308, 168-174.	2.6	83
136	Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation. International Journal of Pharmaceutics, 2006, 311, 50-54.	2.6	48
137	Sorption and diffusion of dense carbon dioxide in a biocompatible polymer. Journal of Supercritical Fluids, 2006, 38, 392-398.	1.6	37
138	Supercritical fluid polymerisation and impregnation of molecularly imprinted polymers for drug delivery. Journal of Supercritical Fluids, 2006, 39, 102-106.	1.6	75
139	A comparison between gravimetric and in situ spectroscopic methods to measure the sorption of CO2 in a biocompatible polymer. Journal of Supercritical Fluids, 2005, 36, 160-165.	1.6	41
140	Solubility of Acetazolamide in Supercritical Carbon Dioxide in the Presence of Ethanol as a Cosolvent. Journal of Chemical & Engineering Data, 2005, 50, 216-220.	1.0	25
141	Solubility of Flurbiprofen in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2004, 49, 449-452.	1.0	84
142	Measurement and modelling of bubble and dew points in the binary systems carbon dioxide + cyclobutanone and propane + cyclobutanone. Fluid Phase Equilibria, 2003, 214, 121-136.	1.4	5
143	Preparation of Chitosan Scaffolds for Tissue Engineering Using Supercritical Fluid Technology. Materials Science Forum, 0, 636-637, 22-25.	0.3	15
144	Extraction of Biocompatible Collagen From Blue Shark Skins Through the Conventional Extraction Process Intensification Using Natural Deep Eutectic Solvents. Frontiers in Chemistry, 0, 10, .	1.8	13