List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/756374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective electrophilic di- and monofluorinations for the synthesis of 4-difluoromethyl and 4-fluoromethyl quinazolin(thi)ones by a Selectfluor-triggered multi-component reaction. Organic Chemistry Frontiers, 2022, 9, 1567-1573.	2.3	4
2	Visible-light-induced novel cyclization of 2-(2-(arylethynyl)benzylidene)-malononitrile derivatives with 2,6-di(tert-butyl)-4-methylphenol to bridged spirocyclic compounds. Chinese Chemical Letters, 2022, 33, 5069-5073.	4.8	33
3	Microwave-accelerated and benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with cyclic alkanes under metal-free conditions. Organic and Biomolecular Chemistry, 2022, 20, 3817-3822.	1.5	5
4	Regio- and stereoselective electrochemical selenoalkylation of alkynes with 1,3-dicarbonyl compounds and diselenides. Organic Chemistry Frontiers, 2022, 9, 2815-2820.	2.3	26
5	Visibleâ€Lightâ€Induced Siteâ€Selective Difunctionalization of 2,3â€Dihydrofuran with Quinoxalinâ€2(1 <i>H</i>)â€ones and Peroxides. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
6	A Straightforward Approach to Fluorinated Pyrimido[1,2- <i>b</i>]indazole Derivatives via Metal/Additive-Free Annulation with Enaminones, 3-Aminoindazoles, and Selectfluor. Journal of Organic Chemistry, 2022, 87, 6562-6572.	1.7	18
7	Photoâ€Driven Radical Addition/Cyclization of Biaryl Vinyl Ketones with CF ₃ SO ₂ Na and ArCF ₂ CO ₂ K without an External Photocatalyst. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
8	Catalyst- and Oxidizing Reagent-Free Electrochemical Benzylic C(sp ³)–H Oxidation of Phenol Derivatives. Journal of Organic Chemistry, 2022, 87, 7806-7817.	1.7	15
9	Electrochemical formal [3 + 2] cycloaddition of azobenzenes with hexahydro-1,3,5-triazines. Organic Chemistry Frontiers, 2022, 9, 3769-3774.	2.3	8
10	Electrochemical Dearomatizing Spirocyclization of Alkynes with D imethyl 2-Benzylmalonate s to Spiro[4.5]deca-trienones . Journal of Organic Chemistry, 2022, 87, 8697-8708.	1.7	19
11	Visible-Light-Induced Cascade Cyclization of <i>N</i> -Propargyl Aromatic Amines and Acyl Oxime Esters: Rapid Access to 3-Acylated Quinolines. Journal of Organic Chemistry, 2022, 87, 10277-10284.	1.7	5
12	A practical synthesis of α-bromo/iodo/chloroketones from olefins under visible-light irradiation conditions. Chinese Chemical Letters, 2021, 32, 429-432.	4.8	61
13	Electrochemically promoted C-3 amination of 2 <i>H</i> -indazoles. Organic Chemistry Frontiers, 2021, 8, 754-759.	2.3	29
14	Hydrogen-Bond-Assisted Sequential Reaction of Silyl Glyoxylates: Stereoselective Synthesis of Silyl Enol Ethers. Organic Letters, 2021, 23, 54-59.	2.4	9
15	HFIP-catalyzed direct dehydroxydifluoroalkylation of benzylic and allylic alcohols with difluoroenoxysilanes. Chemical Communications, 2021, 57, 1050-1053.	2.2	33
16	Pyridine atalysed Desulfonylative Addition of βâ€Diketones to Arylazosulfones via Diaziridine Rearrangement. Advanced Synthesis and Catalysis, 2021, 363, 1142-1146.	2.1	0
17	Visible-light-induced photoredox-catalyzed synthesis of benzimidazo[2,1-a]iso-quinoline-6(5H)-ones. Chinese Chemical Letters, 2021, 32, 1229-1232.	4.8	64
18	A Facile Synthesis of Functionalized Benzofurans via Visible‣ightâ€Induced Tandem Cyclization of 1,6â€Enynes with Disulfides. ChemPhotoChem, 2021, 5, 142-148.	1.5	11

#	Article	IF	CITATIONS
19	Facile synthesis of carbamoylated benzimidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones <i>via</i> radical cascade cyclization under metal-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 3489-3496.	1.5	25
20	Organocatalytic electrochemical amination of benzylic C–H bonds. Organic Chemistry Frontiers, 2021, 8, 4700-4705.	2.3	33
21	<i>ortho</i> -Ethynyl group assisted regioselective and diastereoselective [2 + 2] cross-photocycloaddition of alkenes under photocatalyst-, additive-, and solvent-free conditions. Organic Chemistry Frontiers, 2021, 8, 5872-5887.	2.3	20
22	Photochemical synthesis of 3-hydroxyphenanthro[9,10-c]furan-1(3H)-ones from α-keto acids and alkynes. Organic Chemistry Frontiers, 2021, 8, 975-982.	2.3	8
23	Visible-light-induced C(sp3)–H functionalizations of piperidines to 3,3-dichloro-2-hydroxy-piperidines with N-chlorosuccinimide. Organic and Biomolecular Chemistry, 2021, 19, 6141-6146.	1.5	3
24	Electrooxidative tandem cyclization of N-propargylanilines with sulfinic acids for rapid access to 3-arylsulfonylquinoline derivatives. Green Chemistry, 2021, 23, 4733-4740.	4.6	20
25	Metal-free dearomative [5+2]/[2+2] cycloaddition of 1 <i>H</i> -indoles with <i>ortho</i> -(trimethylsilyl)aryl triflates. Chemical Communications, 2021, 57, 7047-7050.	2.2	4
26	Metalâ€Free Synthesis of 2â€Aryl Quinazolines via Tandem Câ^'H/Nâ^'H Bond Functionalization. ChemistrySelect, 2021, 6, 3707-3711.	0.7	2
27	Visible-light-induced chemoselective reactions of quinoxalin-2(1H)-ones with alkylboronic acids under air/N2 atmosphere. Chinese Chemical Letters, 2021, 32, 4033-4037.	4.8	25
28	Synthesis of Spirolactones via a BF ₃ ·Et ₂ O-Promoted Cascade Annulation of α-Keto Acids and 1,3-Enynes. Organic Letters, 2021, 23, 5698-5702.	2.4	10
29	Site-Selective Electrochemical C–H Cyanation of Indoles. Organic Letters, 2021, 23, 5983-5987.	2.4	20
30	Electrochemical Trifluoromethylthiolation and Spirocyclization of Alkynes with AgSCF ₃ : Access to SCF ₃ -Containing Spiro[5,5]trienones. Organic Letters, 2021, 23, 6691-6696.	2.4	58
31	HFIP-Catalyzed Difluoroalkylation of Propargylic Alcohols to Access Tetrasubstituted Difluoroalkyl Allenes. Organic Letters, 2021, 23, 7264-7269.	2.4	26
32	Environmentally Benign Synthesis of Quinoline–Spiroquinazolinones by Iron-Catalyzed Dehydrogenative [4 + 2] Cycloaddition of Secondary/Tertiary Anilines and 4-Methylene-quinazolinones. Journal of Organic Chemistry, 2021, 86, 12257-12266.	1.7	11
33	<i>t</i> -BuOK-Mediated Reductive Desulfonylation/Dehydrogenation for the Synthesis of 2-Substituted 1,3-Dienes and Their [4+2] Cycloaddition Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 3144.	0.6	4
34	Amino-assisted synthesis of alkynylthioethers <i>via</i> a visible-light-induced C _(sp) –S ^{II} coupling between bromoalkynes and 2,2′-diaminodiaryldisulfides. Organic Chemistry Frontiers, 2021, 8, 5345-5351.	2.3	7
35	Electrochemical synthesis of sulfonated benzothiophenes using 2-alkynylthioanisoles and sodium sulfinates. Organic and Biomolecular Chemistry, 2021, 19, 3844-3849.	1.5	36
36	Controllable chemoselectivity in the reaction of 2 <i>H</i> -indazoles with alcohols under visible-light irradiation: synthesis of C3-alkoxylated 2 <i>H</i> -indazoles and <i>ortho</i> -alkoxycarbonylated azobenzenes. Organic Chemistry Frontiers, 2021, 8, 4230-4236.	2.3	13

#	Article	IF	CITATIONS
37	Sunlight-mediated [3 + 2] cycloaddition of azobenzenes with arynes: an approach toward the carbazole skeleton. Organic Chemistry Frontiers, 2021, 8, 5045-5051.	2.3	16
38	Expeditious Approach to Indoloquinazolinones via Double Annulations of o-Aminoacetophenones and Isocyanates. Journal of Organic Chemistry, 2021, 86, 1448-1455.	1.7	9
39	Visible-Light-Driven Multicomponent Cyclization by Trapping a 1,3-Vinylimine Ion Intermediate: A Direct Approach to Pyrimido[1,2- <i>b</i>)indazole Derivatives. Organic Letters, 2021, 23, 8343-8347.	2.4	40
40	Electrochemical Intermolecular Monofluoroalkylation of $\hat{1}\pm,\hat{1}^2$ -Unsaturated Carboxylic Acids and Heteroaromatics with 2-Fluoromalonate Esters. Organic Letters, 2021, 23, 8585-8589.	2.4	21
41	Direct Synthesis of Sulfinylated Benzofulvenes via BF ₃ ·Et ₂ O-Promoted Cascade Reactions of Arylsulfinic Acids with 1,3-Enynes. Organic Letters, 2021, 23, 8204-8208.	2.4	3
42	Merging cobalt and photoredox catalysis for the C8–H alkoxylation of 1-naphthylamine derivatives with alcohols. Organic and Biomolecular Chemistry, 2021, 19, 10112-10119.	1.5	3
43	Visible-Light-Induced Alkynylation of α-C-H Bonds of Ethers with Alkynyl Bromides without External Photocatalyst. European Journal of Organic Chemistry, 2020, 2020, 1534-1538.	1.2	13
44	Synthesis of substituted 2-alkylquinolines by visible-light photoredox catalysis. Organic and Biomolecular Chemistry, 2020, 18, 86-92.	1.5	9
45	Room temperature iron(<scp>ii</scp>)-catalyzed radical cyclization of unsaturated oximes with hypervalent iodine reagents. Organic and Biomolecular Chemistry, 2020, 18, 715-724.	1.5	22
46	Visible-Light Photoredox-Catalyzed Regioselective Sulfonylation of Alkenes Assisted by Oximes via [1,5]-H Migration. Journal of Organic Chemistry, 2020, 85, 564-573.	1.7	35
47	Visibleâ€Lightâ€Induced Radical Cascade Cyclizations of 1,7â€Enynes with Sulfinic Acids: Direct Access to Sulfonated Chromanes and Sulfonated Tetrahydroquinolines under Metalâ€Free Conditions. Advanced Synthesis and Catalysis, 2020, 362, 5669-5680.	2.1	26
48	Vinylogous Elimination/C–H Functionalization/Allylation Cascade Reaction of Allenoate Adducts: Synthesis of Ring-Fused Dihydropyridinones. Organic Letters, 2020, 22, 8313-8319.	2.4	8
49	Visible-Light-Induced Decarboxylative Cyclization/Hydrogenation Cascade Reaction to Access Phenanthridin-6-yl(aryl)methanol by an Electron Donor–Acceptor Complex. Journal of Organic Chemistry, 2020, 85, 13808-13817.	1.7	23
50	Visibleâ€Light Photoredox Catalyzed Câ^'N Coupling of Quinoxalineâ€2(1 <i>H</i>)â€ones with Azoles without External Photosensitizer. ChemCatChem, 2020, 12, 5261-5268.	1.8	31
51	Photo-driven haloazidation cyclization of 1,5-enynes having cyano groups with TMSN ₃ and NIS/NCS/NBS under metal-free conditions. Chemical Communications, 2020, 56, 7933-7936.	2.2	33
52	Synthesis of sulfone-functionalized chroman-4-ones and chromans through visible-light-induced cascade radical cyclization under transition-metal-free conditions. Green Chemistry, 2020, 22, 2270-2278.	4.6	41
53	Photoinitiated decarboxylative C3-difluoroarylmethylation of quinoxalin-2(1 <i>H</i>)-ones with potassium 2,2-difluoro-2-arylacetates in water. RSC Advances, 2020, 10, 10559-10568.	1.7	20
54	Additive-free coupling of bromoalkynes with secondary phosphine oxides to generate alkynylphosphine oxides in acetic anhydride. Organic and Biomolecular Chemistry, 2020, 18, 1087-1090.	1.5	5

#	Article	IF	CITATIONS
55	Aqueous ZnCl ₂ Complex Catalyzed Prins Reaction of Silyl Glyoxylates: Access to Functionalized Tertiary α-Silyl Alcohols. Journal of Organic Chemistry, 2020, 85, 5825-5837.	1.7	9
56	A Highly Efficient Copperâ€Catalyzed C(sp ²)â~H Alkoxylation of the Benzamide Enabled by A Bidendate Directing Group. Asian Journal of Organic Chemistry, 2019, 8, 171-178.	1.3	7
57	DDQ-promoted direct C–H amination of ethers with N-alkoxyamides under visible-light irradiation and metal-free conditions. Tetrahedron, 2019, 75, 130516.	1.0	6
58	Synthesis of Vinyl Sulfones through Visible Lightâ€Induced Decarboxylative Sulfonylation of Cinnamic Acids with Disulfides. Asian Journal of Organic Chemistry, 2019, 8, 1426-1435.	1.3	11
59	Visibleâ€Lightâ€Induced Tandem Cyclization of Alkynoates and Phenylacetylenes to Naphtho[2,1â€ <i>c</i>]coumarins. Asian Journal of Organic Chemistry, 2019, 8, 1448-1457.	1.3	6
60	Annulation of Benzamides with Arynes Using Palladium with Photoredox Dual Catalysis. Journal of Organic Chemistry, 2019, 84, 9007-9016.	1.7	31
61	Visible‣ightâ€Induced Alkoxylation of Quinoxalinâ€2(1 <i>H</i>)â€ones with Alcohols for the Synthesis of Heteroaryl Ethers. Advanced Synthesis and Catalysis, 2019, 361, 5363-5370.	2.1	45
62	Copper-Catalyzed Cascade Cyclization of Arylsulfonylhydrazones Derived from <i>ortho</i> -Alkynyl Arylketones: Regioselective Synthesis of Functionalized Cinnolines. Organic Letters, 2019, 21, 9291-9295.	2.4	21
63	"On Water―Direct Catalytic Vinylogous Aldol Reaction of Silyl Glyoxylates. Journal of Organic Chemistry, 2019, 84, 14281-14290.	1.7	13
64	Photoinduced synthesis of α-trifluoromethylated ketones through the oxidative trifluoromethylation of styrenes using CF ₃ SO ₂ Na as a trifluoromethyl reagent without an external photoredox catalyst. Organic Chemistry Frontiers, 2019, 6, 87-93.	2.3	60
65	Hydrogen and Sulfonyl Radical Generation for the Hydrogenation and Arylsulfonylation of Alkenes Driven by Photochemical Activity of Hydrogen Bond Donorâ€Acceptor Complexes. Advanced Synthesis and Catalysis, 2019, 361, 1606-1616.	2.1	18
66	Visible-light-induced deboronative alkylarylation of acrylamides with organoboronic acids. Organic and Biomolecular Chemistry, 2019, 17, 6612-6619.	1.5	35
67	Controllable chemoselectivity in the coupling of bromoalkynes with alcohols under visible-light irradiation without additives: synthesis of propargyl alcohols and α-ketoesters. Chemical Communications, 2019, 55, 8438-8441.	2.2	16
68	Visible-light-induced radical cyclization of <i>N</i> -allylbenzamides with CF ₃ SO ₂ Na to trifluoromethylated dihydroisoquinolinones in water at room temperature. Green Chemistry, 2019, 21, 3362-3369.	4.6	46
69	Visible-light-induced Pd-catalyzed <i>ortho</i> -trifluoromethylation of acetanilides with CF ₃ SO ₂ Na under ambient conditions in the absence of an external photocatalyst. Chemical Communications, 2019, 55, 3737-3740.	2.2	45
70	10 Palladium in Photocatalysis. , 2019, , .		0
71	Visibleâ€Lightâ€Induced Hydroxysulfurization and Alkoxysulfurization of Styrenes in the Absence of Photocatalyst: Synthesis of βâ€Hydroxysulfides and βâ€Alkoxysulfides. Advanced Synthesis and Catalysis, 2019, 361, 3217-3222.	2.1	32
72	Palladium-catalyzed direct C2-arylation of azoles with aromatic triazenes. Organic and Biomolecular Chemistry, 2019, 17, 9209-9216.	1.5	20

#	Article	IF	CITATIONS
73	Direct Synthesis of Benzo[<i>f</i>]indazoles from Sulfonyl Hydrazines and 1,3-Enynes by Copper-Catalyzed Annulation. Organic Letters, 2019, 21, 124-128.	2.4	20
74	Synthesis of 2‣ulfonatedâ€ <i>9H</i> â€Pyrrolo[1,2â€ <i>a</i>]indoles via a Agâ€Promoted Cascade Sulfonatior and Cyclization. European Journal of Organic Chemistry, 2019, 2019, 221-227.	¹ 1.2	15
75	Photoinduced cyclization of alkynoates to coumarins with N-Iodosuccinimide as a free-radical initiator under ambient andÂmetal-free conditions. Tetrahedron, 2019, 75, 1044-1051.	1.0	22
76	Cobaltâ€Catalyzed Temperatureâ€Dependent Annulation of 3â€Arylâ€1,2,4â€oxadiazolones with 1,3â€Diynes: Ar Approach to Ï€â€Conjugated Molecules. Advanced Synthesis and Catalysis, 2019, 361, 2885-2896.	¹ 2.1	15
77	Visible-light induced decarboxylative C2-alkylation of benzothiazoles with carboxylic acids under metal-free conditions. Organic and Biomolecular Chemistry, 2019, 17, 115-121.	1.5	23
78	A visible-light-induced oxidative cyclization of <i>N</i> -propargylanilines with sulfinic acids to 3-sulfonated quinoline derivatives without external photocatalysts. Chemical Communications, 2019, 55, 2785-2788.	2.2	48
79	Iron-Catalyzed C(sp ³)–H Acyloxylation of Aryl-2 <i>H</i> Azirines with Hypervalent Iodine(III) Reagents. Organic Letters, 2018, 20, 1663-1666.	2.4	27
80	Tuning chemoselectivity in <i>O</i> -/ <i>N</i> -arylation of 3-aryl-1,2,4-oxadiazolones with <i>ortho</i> -(trimethylsilyl)phenyl triflates <i>via</i> aryne insertion. Chemical Communications, 2018, 54, 4822-4825.	2.2	21
81	Transitionâ€Metalâ€Free Regioselective C–H Bond Fluorination of 8â€Amidoquinolines with Selectfluor. European Journal of Organic Chemistry, 2018, 2018, 2091-2097.	1.2	15
82	Palladium/PC-Phos-Catalyzed Enantioselective Arylation of General Sulfenate Anions: Scope and Synthetic Applications. Journal of the American Chemical Society, 2018, 140, 3467-3473.	6.6	116
83	Organocatalytic Asymmetric Vinylogous Aldol Reaction of Allyl Aryl Ketones to Silyl Glyoxylates. Journal of Organic Chemistry, 2018, 83, 1518-1524.	1.7	31
84	Photoinduced <i>N</i> â€Methylation and <i>N</i> â€Sulfonylation of Azobenzenes with DMSO Under Mild Reaction Conditions. Advanced Synthesis and Catalysis, 2018, 360, 1199-1208.	2.1	33
85	Visible-Light-Promoted Oxidative Amidation of Bromoalkynes with Anilines: An Approach to α-Ketoamides. Organic Letters, 2018, 20, 2245-2248.	2.4	38
86	Selective remote C–H trifluoromethylation of aminoquinolines with CF ₃ SO ₂ Na under visible light irradiation in the absence of an external photocatalyst. Organic Chemistry Frontiers, 2018, 5, 1689-1697.	2.3	62
87	Photo-Driven Synthesis of C6-Polyfunctionalized Phenanthridines from Three-Component Reactions of Isocyanides, Alkynes, and Sulfinic Acids by Electron Donor–Acceptor Complex. Organic Letters, 2018, 20, 1735-1739.	2.4	79
88	<i>tert</i> -Butyl peroxybenzoate mediated formation of 3-alkylated quinolines from <i>N</i> -propargylamines <i>via</i> a cascade radical addition/cyclization reaction. Organic Chemistry Frontiers, 2018, 5, 855-859.	2.3	28
89	Visible-light-induced selective amination of enol ethers with <i>N</i> -alkoxyamides by using DDQ as a photoredox catalyst. Organic Chemistry Frontiers, 2018, 5, 3562-3566.	2.3	13
90	Nickel-catalyzed regioselective arylation of aromatic amides with aryl iodides enabled by an <i>N</i> , <i>O</i> -bidentate directing group. Organic and Biomolecular Chemistry, 2018, 16, 8783-8790.	1.5	6

#	Article	IF	CITATIONS
91	Copperâ€Catalyzed Deoxygenative Câ€2 Amination of Quinoline <i>N</i> â€Oxides. European Journal of Organic Chemistry, 2018, 2018, 5954-5960.	1.2	21
92	Selective Synthesis of Diaryl Sulfoxides and <i>m</i> -Arylthio Sulfones from Arylsulfinic Acids and Arenes via BF ₃ -Promoted C–S Bond Formation. Organic Letters, 2018, 20, 4416-4420.	2.4	19
93	Synthesis of Multisubstituted Furans via a Catalyst- and Additive-Free Tandem Reaction of Enynones with Sulfinic Acids in Water. Organic Letters, 2018, 20, 4430-4433.	2.4	31
94	A catalyst-controlled switchable reaction of β-keto acids to silyl glyoxylates. Organic and Biomolecular Chemistry, 2018, 16, 4117-4126.	1.5	14
95	4â€Dimethylaminopyridineâ€Catalyzed Regioselective [3+2] Cycloaddition of Isatinâ€Derived Moritaâ''Baylisâ''Hillman Adducts with Azo Esters: A Simple Protocol to Access 3â€Spiropyrazoleâ€2â€oxindoles. Advanced Synthesis and Catalysis, 2018, 360, 3176-3180.	2.1	23
96	Visible Lightâ€Induced Decarboxylative Acylarylation of Phenyl Propiolates with αâ€Oxocarboxylic Acids to Coumarins Catalyzed by Hypervalent Iodine Reagents under Transition Metalâ€Free Conditions. Advanced Synthesis and Catalysis, 2017, 359, 443-453.	2.1	66
97	Rhodium(III)â€Catalyzed Regioselective Decarboxylative Cyclization for the Synthesis of 4 <i>H< i>â€Furo[3,2â€<i>c</i>]chromenâ€4â€one Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 467-475.</i>	2.1	28
98	Visible-light-induced dual C–C bond formation via selective C(sp ³)–H bond cleavage: efficient access to alkylated oxindoles from activated alkenes and simple ethers under metal-free conditions. Green Chemistry, 2017, 19, 1732-1739.	4.6	62
99	Visible-light-induced and iron-catalyzed methylation of N-arylacrylamides with dimethyl sulphoxide: a convenient access to 3-ethyl-3-methyl oxindoles. Organic and Biomolecular Chemistry, 2017, 15, 4205-4211.	1.5	45
100	Organocatalyzed Direct Aldol Reaction of Silyl Glyoxylates for the Synthesis of α-Hydroxysilanes. Organic Letters, 2017, 19, 2282-2285.	2.4	27
101	Photoinduced difunctionalization of 2,3-dihydrofuran for the efficient synthesis of 2,3-disubstituted tetrahydrofurans. Organic Chemistry Frontiers, 2017, 4, 1640-1646.	2.3	11
102	Photoinduced Oxidative Formylation of <i>N</i> , <i>N</i> -Dimethylanilines with Molecular Oxygen without External Photocatalyst. Organic Letters, 2017, 19, 3386-3389.	2.4	88
103	Visible-Light-Promoted [2 + 2 + 2] Cyclization of Alkynes with Nitriles to Pyridines Using Pyrylium Salts as Photoredox Catalysts. Organic Letters, 2017, 19, 1958-1961.	2.4	49
104	Visible light-induced tandem oxidative cyclization of 2-alkynylanilines with disulfides (diselenides) to 3-sulfenyl- and 3-selenylindoles under transition metal-free and photocatalyst-free conditions. Organic Chemistry Frontiers, 2017, 4, 1322-1330.	2.3	65
105	Rh ^{III} -Catalyzed site-selective amidation with nitrone as a traceless directing group: an approach to functionalized arylaldehydes. Chemical Communications, 2017, 53, 10322-10325.	2.2	48
106	Visible-light-induced tandem cyclization of 2-alkynylanilines with disulfides: a convenient method for accessing benzothiophenes under transition-metal-free and photocatalyst-free conditions. Organic and Biomolecular Chemistry, 2017, 15, 7678-7684.	1.5	22
107	Visible-light-induced oxidative formylation of N-alkyl-N-(prop-2-yn-1-yl)anilines with molecular oxygen in the absence of an external photosensitizer. Chemical Communications, 2017, 53, 8482-8485.	2.2	48
108	Merging Visibleâ€Light Photocatalysis and Palladium Catalysis for Câ^'H Acylation of Azo―and Azoxybenzenes with αâ€Keto Acids. Chemistry - A European Journal, 2016, 22, 2236-2242.	1.7	103

#	Article	IF	CITATIONS
109	Decarboxylative/decarbonylative C3-acylation of indoles via photocatalysis: a simple and efficient route to 3-acylindoles. Green Chemistry, 2016, 18, 4916-4923.	4.6	76
110	Synthesis of imides via palladium-catalyzed decarboxylative amidation of α-oxocarboxylic acids with secondary amides. Organic and Biomolecular Chemistry, 2016, 14, 4749-4757.	1.5	16
111	Silverâ€Promoted Cascade Reaction of 4â€Hydroxycoumarins with αâ€Keto Acids under Microwave Irradiation: Oneâ€Step Construction of Quaternary Stereocenters. European Journal of Organic Chemistry, 2016, 2016, 4907-4915.	1.2	11
112	Nickel-Catalyzed Site-Selective C–H Bond Difluoroalkylation of 8-Aminoquinolines on the C5-Position. Organic Letters, 2016, 18, 4794-4797.	2.4	91
113	Direct synthesis of sulfonated dihydroisoquinolinones from N-allylbenzamide and arylsulfinic acids via TBHP-promoted cascade radical addition and cyclization. Chemical Communications, 2016, 52, 11559-11562.	2.2	48
114	Thiyl radical catalyzed oxidation of diarylalkynes to $\hat{I}\pm$ -diketones by molecular oxygen under visible-light irradiation. Green Chemistry, 2016, 18, 6373-6379.	4.6	82
115	Visible-Light Photoredox Catalyzed Three-Component Cyclization of 2 <i>H</i> -Azirines, Alkynyl Bromides, and Molecular Oxygen to Oxazole Skeleton. Organic Letters, 2016, 18, 3646-3649.	2.4	70
116	<i>ortho</i> -Heteroarylation of Azobenzenes by Rh-Catalyzed Cross-Dehydrogenative Coupling: An Approach to Conjugated Biaryls. Organic Letters, 2016, 18, 3110-3113.	2.4	47
117	Visible-Light-Induced Direct Thiolation at α-C(sp ³)–H of Ethers with Disulfides Using Acridine Red as Photocatalyst. Organic Letters, 2016, 18, 1546-1549.	2.4	86
118	Direct construction of 4-aryl tetralones via visible-light-induced cyclization of styrenes with molecular oxygen. Green Chemistry, 2016, 18, 2864-2870.	4.6	51
119	Photocatalyst-free hypervalent iodine reagent catalyzed decarboxylative acylarylation of acrylamides with α-oxocarboxylic acids driven by visible-light irradiation. Chemical Communications, 2016, 52, 1462-1465.	2.2	128
120	Sunlightâ€Driven Decarboxylative Alkynylation of αâ€Keto Acids with Bromoacetylenes by Hypervalent Iodine Reagent Catalysis: A Facile Approach to Ynones. Angewandte Chemie - International Edition, 2015, 54, 8374-8377.	7.2	230
121	Visibleâ€Light Photoredox Catalysis: Direct Synthesis of Sulfonated Oxindoles from <i>N</i> â€Arylacrylamides and Arylsulfinic Acids by Means of a Cascade Câ^'S/Câ^'C Formation Process. Chemistry - an Asian Journal, 2015, 10, 1919-1925.	1.7	77
122	DMAP-Catalyzed [2 + 4] Cycloadditions of Allenoates with <i>N</i> -Acyldiazenes: Direct Method to 1,3,4-Oxadiazine Derivatives. Organic Letters, 2015, 17, 3272-3275.	2.4	45
123	Merging Photoredox with Palladium Catalysis: Decarboxylative <i>ortho</i> -Acylation of Acetanilides with α-Oxocarboxylic Acids under Mild Reaction Conditions. Organic Letters, 2015, 17, 6198-6201.	2.4	156
124	^{<i>n</i>} Bu ₃ P-Catalyzed Desulfonylative [3 + 2] Cycloadditions of Allylic Carbonates with Arylazosulfones to Pyrazole Derivatives. Organic Letters, 2015, 17, 872-875.	2.4	59
125	A Sulfenylation Reaction: Direct Synthesis of 3-Arylsulfinylindoles from Arylsulfinic Acids and Indoles in Water. Organic Letters, 2015, 17, 832-835.	2.4	69
126	Oxidative cross-coupling of pyridine N-oxides and ethers between C(sp ²)–H/C(sp ³)–H bonds under transition-metal-free conditions. Organic and Biomolecular Chemistry, 2015, 13, 4596-4604.	1.5	53

#	Article	IF	CITATIONS
127	Palladium-catalyzed direct ortho-ethoxycarbonylation of azobenzenes and azoxybenzenes with diethyl azodicarboxylate. Organic and Biomolecular Chemistry, 2015, 13, 9083-9092.	1.5	24
128	Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions. Chemical Communications, 2015, 51, 7520-7523.	2.2	228
129	A Unique Alkylation of Azobenzenes with Allyl Acetates by Rh ^{III} -Catalyzed C–H Functionalization. Organic Letters, 2015, 17, 2450-2453.	2.4	46
130	Ruâ€Catalyzed Decarboxylative Annulations of αâ€Keto Acids with Internal Alkynes: Dual Roles of COOH as Directing Group and Leaving Group. Chemistry - A European Journal, 2015, 21, 1904-1907.	1.7	49
131	Palladium atalyzed Desulfitative Cross oupling Reaction of Sodium Arylsulfinates with Hâ€Phosphonate Diesters. Advanced Synthesis and Catalysis, 2014, 356, 967-971.	2.1	50
132	Ruthenium-catalyzed alkenylation of azoxybenzenes with alkenes through ortho-selective C–H activation. Chemical Communications, 2014, 50, 4218-4221.	2.2	58
133	Palladiumâ€Catalyzed Desulfitative Direct CH Arylation of Electronâ€Deficient Polyfluoroarenes with Sodium Arenesulfinates. Advanced Synthesis and Catalysis, 2014, 356, 429-436.	2.1	56
134	The Benzoyl Peroxide Promoted Dual C–C Bond Formation via Dual C–H Bond Cleavage: α-Phenanthridinylation of Ether by Isocyanide. Organic Letters, 2014, 16, 2088-2091.	2.4	123
135	A new library of arsine, stibine-stabilized N-heterocyclic carbene palladium complexes: synthesis, structures and activities in C–C and C–N coupling reactions. Dalton Transactions, 2014, 43, 14114.	1.6	23
136	KOAc-promoted alkynylation of α-C–H bonds of ethers with alkynyl bromides under transition-metal-free conditions. Organic and Biomolecular Chemistry, 2014, 12, 2969-2978.	1.5	32
137	Palladium atalyzed Direct C2 Arylation of <i>N</i> ubstituted Indoles with 1â€Aryltriazenes. Chemistry - an Asian Journal, 2014, 9, 2584-2589.	1.7	17
138	Dinuclear N-heterocyclic carbene palladium(II) complexes as efficient catalysts for the Buchwald–Hartwig amination. Journal of Organometallic Chemistry, 2014, 766, 73-78.	0.8	25
139	Microwaveâ€Accelerated Pdâ€Catalyzed Desulfitative Direct C2â€Arylation of Free (NH)â€Indoles with Arylsulfinic Acids. Chemistry - an Asian Journal, 2013, 8, 3185-3190.	1.7	49
140	Unprecedented ortho-acylation of azoxybenzenes with α-oxocarboxylic acids by Pd-catalyzed C–H activation and decarboxylation. Chemical Communications, 2013, 49, 9170.	2.2	128
141	A Highly Efficient Palladium atalyzed Decarboxylative <i>ortho</i> â€Acylation of Azobenzenes with αâ€Oxocarboxylic Acids: Direct Access to Acylated Azo Compounds. Chemistry - A European Journal, 2013, 19, 14432-14436.	1.7	109
142	Copper-promoted decarboxylative direct C3-acylation of N-substituted indoles with α-oxocarboxylic acids. Chemical Communications, 2013, 49, 2368.	2.2	115
143	Direct Access to Acylated Azobenzenes via Pd-Catalyzed C–H Functionalization and Further Transformation into an Indazole Backbone. Organic Letters, 2013, 15, 620-623.	2.4	171
144	Direct Carbo-Acylation Reactions of 2-Arylpyridines with α-Diketones via Pd-Catalyzed C–H Activation and Selective C(sp2)–C(sp2) Cleavage. Organic Letters, 2012, 14, 4594-4597.	2.4	90

#	Article	IF	CITATIONS
145	An efficient synthesis of 2-bromo(chloro)-3-selenyl(sulfenyl)indoles via tandem reactions of 2-(gem-dibromo(chloro)vinyl)anilines with diselenides(disulfides). Chemical Communications, 2012, 48, 10052.	2.2	36
146	Palladium-catalyzed deamidative arylation of azoles with arylamides through a tandem decarbonylation–C–H functionalization. Chemical Communications, 2012, 48, 4214.	2.2	76
147	Synthesis and characterization of dinuclear NHC–palladium complexes and their applications in the Hiyama reactions of aryltrialkyoxysilanes with aryl chlorides. Dalton Transactions, 2012, 41, 12031.	1.6	45
148	TBHP/I2-promoted oxidative coupling of acetophenones with amines at room temperature under metal-free and solvent-free conditions for the synthesis of α-ketoamides. Green Chemistry, 2012, 14, 2141.	4.6	155
149	A highly efficient palladium-catalyzed desulfitative arylation of azoles with sodium arylsulfinates. Tetrahedron, 2012, 68, 1926-1930.	1.0	86
150	Direct amidation of azoles with formamides via metal-free C–H activation in the presence of tert-butyl perbenzoate. Chemical Communications, 2011, 47, 8946.	2.2	121
151	Direct C2-Alkylation of Azoles with Alcohols and Ethers through Dehydrogenative Cross-Coupling under Metal-Free Conditions. Organic Letters, 2011, 13, 5016-5019.	2.4	193
152	Ironâ€Catalyzed Ligandâ€Free Carbonâ€Selenium (or Tellurium) Coupling of Arylboronic Acids with Diselenides and Ditellurides. Advanced Synthesis and Catalysis, 2009, 351, 1586-1594.	2.1	102
153	Quinazolinone Derivatives as Orally Available Ghrelin Receptor Antagonists for the Treatment of Diabetes and Obesity. Journal of Medicinal Chemistry, 2007, 50, 5202-5216.	2.9	144
154	Cu(II)-Mediated aerobic oxidative synthesis of 2-sulfonylated chromeno[4,3-c]pyrazol-4(2H)-ones. Organic and Biomolecular Chemistry, 0, , .	1.5	3