
Clarissa J Nobile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7563660/publications.pdf Version: 2024-02-01

CLADISSA | NOBILE

#	Article	IF	CITATIONS
1	<i>Candida albicans</i> Biofilms and Human Disease. Annual Review of Microbiology, 2015, 69, 71-92.	2.9	768
2	A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell, 2012, 148, 126-138.	13.5	607
3	Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo. PLoS Pathogens, 2006, 2, e63.	2.1	443
4	Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes and Infection, 2016, 18, 310-321.	1.0	441
5	Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p. Current Biology, 2005, 15, 1150-1155.	1.8	424
6	Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 2018, 16, 19-31.	13.6	405
7	Function of Candida albicans Adhesin Hwp1 in Biofilm Formation. Eukaryotic Cell, 2006, 5, 1604-1610.	3.4	321
8	Complementary Adhesin Function in C. albicans Biofilm Formation. Current Biology, 2008, 18, 1017-1024.	1.8	293
9	Biofilm Matrix Regulation by Candida albicans Zap1. PLoS Biology, 2009, 7, e1000133.	2.6	286
10	Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathogens, 2020, 16, e1008921.	2.1	270
11	Genetics and genomics of Candida albicans biofilm formation. Cellular Microbiology, 2006, 8, 1382-1391.	1.1	237
12	Mucosal Tissue Invasion by Candida albicans Is Associated with E-Cadherin Degradation, Mediated by Transcription Factor Rim101p and Protease Sap5p. Infection and Immunity, 2007, 75, 2126-2135.	1.0	181
13	Anaerobic Bacteria Grow within Candida albicans Biofilms and Induce Biofilm Formation in Suspension Cultures. Current Biology, 2014, 24, 2411-2416.	1.8	164
14	Candida albicans Biofilm-Defective Mutants. Eukaryotic Cell, 2005, 4, 1493-1502.	3.4	160
15	Control of the C. albicans Cell Wall Damage Response by Transcriptional Regulator Cas5. PLoS Pathogens, 2006, 2, e21.	2.1	147
16	<i>Candida albicans</i> transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cellular Microbiology, 2008, 10, 2180-2196.	1.1	144
17	An expanded regulatory network temporally controls <scp><i>C</i></scp> <i>andida albicans</i> biofilm formation. Molecular Microbiology, 2015, 96, 1226-1239.	1.2	140
18	Discovery of a "White-Gray-Opaque―Tristable Phenotypic Switching System in Candida albicans: Roles of Non-genetic Diversity in Host Adaptation. PLoS Biology, 2014, 12, e1001830.	2.6	122

#	Article	IF	CITATIONS
19	Structure of the transcriptional network controlling whiteâ€opaque switching in <scp><i>C</i></scp> <i>andida albicans</i> . Molecular Microbiology, 2013, 90, 22-35.	1.2	118
20	<i>Candida albicans</i> Hyr1p Confers Resistance to Neutrophil Killing and Is a Potential Vaccine Target. Journal of Infectious Diseases, 2010, 201, 1718-1728.	1.9	112
21	White-Opaque Switching in Natural MTLa/α Isolates of Candida albicans: Evolutionary Implications for Roles in Host Adaptation, Pathogenesis, and Sex. PLoS Biology, 2013, 11, e1001525.	2.6	107
22	Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes and Infection, 2010, 12, 488-496.	1.0	99
23	Mucins Suppress Virulence Traits of Candida albicans. MBio, 2014, 5, e01911.	1.8	95
24	A sticky situation. Transcription, 2012, 3, 315-322.	1.7	91
25	A Histone Deacetylase Adjusts Transcription Kinetics at Coding Sequences during Candida albicans Morphogenesis. PLoS Genetics, 2012, 8, e1003118.	1.5	88
26	Genetic Control of Conventional and Pheromone-Stimulated Biofilm Formation in Candida albicans. PLoS Pathogens, 2013, 9, e1003305.	2.1	83
27	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	1.4	81
28	Genetic control of chlamydospore formation in Candida albicans. Microbiology (United Kingdom), 2003, 149, 3629-3637.	0.7	78
29	<i>In Vitro</i> Culturing and Screening of <i>Candida albicans</i> Biofilms. Current Protocols in Microbiology, 2018, 50, e60.	6.5	72
30	Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7660-7665.	3.3	71
31	A Histone Deacetylase Complex Mediates Biofilm Dispersal and Drug Resistance in Candida albicans. MBio, 2014, 5, e01201-14.	1.8	70
32	Global Identification of Biofilm-Specific Proteolysis in Candida albicans. MBio, 2016, 7, .	1.8	63
33	<i>S. oralis</i> activates the Efg1 filamentation pathway in <i>C. albicans</i> to promote cross-kingdom interactions and mucosal biofilms. Virulence, 2017, 8, 1602-1617.	1.8	59
34	Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans. PLoS Genetics, 2017, 13, e1006949.	1.5	58
35	Assessment and Optimizations of Candida albicans <i>In Vitro</i> Biofilm Assays. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	55
36	Microbial biofilms: e pluribus unum. Current Biology, 2007, 17, R349-R353.	1.8	50

#	Article	IF	CITATIONS
37	Large-Scale Gene Disruption Using the UAU1 Cassette. Methods in Molecular Biology, 2009, 499, 175-194.	0.4	50
38	Community ecology across bacteria, archaea and microbial eukaryotes in the sediment and seawater of coastal Puerto Nuevo, Baja California. PLoS ONE, 2019, 14, e0212355.	1,1	44
39	<i>Candida albicans</i> Cas5, a Regulator of Cell Wall Integrity, Is Required for Virulence in Murine and <i>Toll</i> Mutant Fly Models. Journal of Infectious Diseases, 2009, 200, 152-157.	1.9	43
40	<i>Candida</i> –streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes. Molecular Oral Microbiology, 2015, 30, 307-322.	1.3	41
41	<scp>Bcr</scp> 1 plays a central role in the regulation of opaque cell filamentation in <i><scp>C</scp>andida albicans</i> . Molecular Microbiology, 2013, 89, 732-750.	1.2	36
42	<i>N</i> -Acetylglucosamine-Induced Cell Death in Candida albicans and Its Implications for Adaptive Mechanisms of Nutrient Sensing in Yeasts. MBio, 2015, 6, e01376-15.	1.8	35
43	Combination of Antifungal Drugs and Protease Inhibitors Prevent Candida albicans Biofilm Formation and Disrupt Mature Biofilms. Frontiers in Microbiology, 2020, 11, 1027.	1.5	34
44	Valley fever: danger lurking in a dust cloud. Microbes and Infection, 2014, 16, 591-600.	1.0	33
45	Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch. MBio, 2016, 7, e01565-15.	1.8	33
46	Lactic acid bacteria differentially regulate filamentation in two heritable cell types of the human fungal pathogen <i>Candida albicans</i> . Molecular Microbiology, 2016, 102, 506-519.	1.2	29
47	Transcriptional Circuits Regulating Developmental Processes in Candida albicans. Frontiers in Cellular and Infection Microbiology, 2020, 10, 605711.	1.8	26
48	Evolution of the complex transcription network controlling biofilm formation in Candida species. ELife, 2021, 10, .	2.8	25
49	White Cells Facilitate Opposite- and Same-Sex Mating of Opaque Cells in Candida albicans. PLoS Genetics, 2014, 10, e1004737.	1.5	23
50	Mucin O-glycans are natural inhibitors of Candida albicans pathogenicity. Nature Chemical Biology, 2022, 18, 762-773.	3.9	22
51	The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP). Toxicon: X, 2019, 4, 100016.	1.2	21
52	Postâ€ŧranscriptional regulation of transcript abundance by a conserved member of the tristetraprolin family in <scp><i>C</i></scp> <i>andida albicans</i> . Molecular Microbiology, 2015, 95, 1036-1053.	1.2	19
53	<i>S</i> -nitrosomycothiol reductase and mycothiol are required for survival under aldehyde stress and biofilm formation in <i>Mycobacterium smegmatis</i> . IUBMB Life, 2016, 68, 621-628.	1.5	19
54	An expanded cell wall damage signaling network is comprised of the transcription factors Rlm1 and Sko1Ain Candida albicans. PLoS Genetics, 2020, 16, e1008908.	1.5	19

#	Article	IF	CITATIONS
55	Filamentous growth is a general feature of <i>Candida auris</i> clinical isolates. Medical Mycology, 2021, 59, 734-740.	0.3	19
56	The Candida albicans HIR histone chaperone regulates the yeast-to-hyphae transition by controlling the sensitivity to morphogenesis signals. Scientific Reports, 2017, 7, 8308.	1.6	18
57	Visualization of Biofilm Formation in Candida albicans Using an Automated Microfluidic Device. Journal of Visualized Experiments, 2017, , .	0.2	18
58	The protein kinase Ire1 impacts pathogenicity of <scp> <i>Candida albicans</i> </scp> by regulating homeostatic adaptation to endoplasmic reticulum stress. Cellular Microbiology, 2021, 23, e13307.	1.1	18
59	Glucanase Induces Filamentation of the Fungal Pathogen Candida albicans. PLoS ONE, 2013, 8, e63736.	1.1	18
60	The planarian Schmidtea mediterranea is a new model to study host-pathogen interactions during fungal infections. Developmental and Comparative Immunology, 2019, 93, 18-27.	1.0	17
61	Visible Lights Combined with Photosensitizing Compounds Are Effective against Candida albicans Biofilms. Microorganisms, 2021, 9, 500.	1.6	17
62	Distinct roles of the 7-transmembrane receptor protein Rta3 in regulating the asymmetric distribution of phosphatidylcholine across the plasma membrane and biofilm formation in <i>Candida albicans</i> . Cellular Microbiology, 2017, 19, e12767.	1.1	16
63	Mathematical modeling of the Candida albicans yeast to hyphal transition reveals novel control strategies. PLoS Computational Biology, 2021, 17, e1008690.	1.5	16
64	Interactions of microorganisms with host mucins: a focus on <i>Candida albicans</i> . FEMS Microbiology Reviews, 2020, 44, 645-654.	3.9	15
65	The gray phenotype and tristable phenotypic transitions in the human fungal pathogen Candida tropicalis. Fungal Genetics and Biology, 2016, 93, 10-16.	0.9	13
66	Transcriptional regulation of the caspofungin-induced cell wall damage response in Candida albicans. Current Genetics, 2020, 66, 1059-1068.	0.8	13
67	Photodynamic Therapy Is Effective Against Candida auris Biofilms. Frontiers in Cellular and Infection Microbiology, 2021, 11, 713092.	1.8	11
68	Unraveling How Candida albicans Forms Sexual Biofilms. Journal of Fungi (Basel, Switzerland), 2020, 6, 14.	1.5	10
69	Molecular Characterization of the N-Acetylglucosamine Catabolic Genes in Candida africana, a Natural N-Acetylglucosamine Kinase (HXK1) Mutant. PLoS ONE, 2016, 11, e0147902.	1.1	10
70	A case of <i>Candida auris</i> candidemia in Xiamen, China, and a comparative analysis of clinical isolates in China. Mycology, 2022, 13, 68-75.	2.0	10
71	N-Acetylglucosamine (GlcNAc) Sensing, Utilization, and Functions in Candida albicans. Journal of Fungi (Basel, Switzerland), 2020, 6, 129.	1.5	9
72	Biofilms and Antifungal Resistance. , 2015, , 71-90.		9

#	Article	IF	CITATIONS
73	A Selective Serotonin Reuptake Inhibitor, a Proton Pump Inhibitor, and Two Calcium Channel Blockers Inhibit Candida albicans Biofilms. Microorganisms, 2020, 8, 756.	1.6	9
74	<i>Candida auris</i> infections in China. Virulence, 2022, 13, 589-591.	1.8	9
75	Whole RNA-Sequencing and Transcriptome Assembly of Candida albicans and Candida africana under Chlamydospore-Inducing Conditions. Genome Biology and Evolution, 2017, 9, 1971-1977.	1.1	8
76	The Als3 Cell Wall Adhesin Plays a Critical Role in Human Serum Amyloid A1-Induced Cell Death and Aggregation in Candida albicans. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	8
77	A Markerless CRISPR-Mediated System for Genome Editing in Candida auris Reveals a Conserved Role for Cas5 in the Caspofungin Response. Microbiology Spectrum, 2021, 9, e0182021.	1.2	8
78	Prelude to a Kiss: Evidence for Mate Discrimination in the Striped Bark Scorpion, Centruroides vittatus. Journal of Insect Behavior, 2005, 18, 405-413.	0.4	7
79	Antifungal Activity of Mammalian Serum Amyloid A1 against <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	7
80	<i>In Situ</i> Imaging of Candida albicans Hyphal Growth via Atomic Force Microscopy. MSphere, 2020, 5, .	1.3	5
81	The Roles of Chromatin Accessibility in Regulating the Candida albicans White-Opaque Phenotypic Switch. Journal of Fungi (Basel, Switzerland), 2021, 7, 37.	1.5	5
82	Genome-Wide Chromatin Immunoprecipitation in Candida albicans and Other Yeasts. Methods in Molecular Biology, 2016, 1361, 161-184.	0.4	4
83	AddTag, a two-step approach with supporting software package that facilitates CRISPR/Cas-mediated precision genome editing. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	4
84	Genetic regulation of the development of mating projections in <i>Candida albicans</i> . Emerging Microbes and Infections, 2020, 9, 413-426.	3.0	3
85	Epithelial Infection With Candida albicans Elicits a Multi-System Response in Planarians. Frontiers in Microbiology, 2020, 11, 629526.	1.5	3
86	A Screen for Small Molecules to Target Candida albicans Biofilms. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 222 Td
87	Probing Real-Time Hyphal Growth of Candida albicans using Atomic Force Microscopy: The Effect of Temperature. Biophysical Journal, 2020, 118, 619a.	0.2	0
88	Into the wild—Exploring the life cycles of yeasts. Yeast, 2021, 38, 3-4.	0.8	0
89	Postgenomic Strategies for Genetic Analysis: Insight from Saccharomyces cerevisiae and Candida albicans. , 0, , 35-P1.		0

Genome-wide Profiling of Transcription Factor-DNA Binding Interactions in Candida albicans: A Comprehensive CUT&amp;RUN Method and Data Analysis Workflow. Journal 0.2 0 of Visualized Experiments, 2022, , .

#	Article	IF	CITATIONS
91	Title is missing!. , 2020, 16, e1008908.		0
92	Title is missing!. , 2020, 16, e1008908.		0
93	Title is missing!. , 2020, 16, e1008908.		0
94	Title is missing!. , 2020, 16, e1008908.		0