Vadivel Ganapathy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7563646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resetting amino acid metabolism of cancer cells by ATB0,+-targeted nanoparticles for enhanced anticancer therapy. Bioactive Materials, 2022, 9, 15-28.	8.6	15
2	Unconventional Functions of Amino Acid Transporters: Role in Macropinocytosis (SLC38A5/SLC38A3) and Diet-Induced Obesity/Metabolic Syndrome (SLC6A19/SLC6A14/SLC6A6). Biomolecules, 2022, 12, 235.	1.8	9
3	Deletion of Slc6a14 reduces cancer growth and metastatic spread and improves survival in KPC mouse model of spontaneous pancreatic cancer. Biochemical Journal, 2022, 479, 719-730.	1.7	10
4	Editorial: Metabolite and Nutrient Transporters in Cancer-Cell Metabolism: Role in Cancer Progression and Metastasis. Frontiers in Cell and Developmental Biology, 2022, 10, 885717.	1.8	2
5	Binding of Citrate-Fe3+ to Plastic Culture Dishes, an Artefact Useful as a Simple Technique to Screen for New Iron Chelators. International Journal of Molecular Sciences, 2022, 23, 6657.	1.8	0
6	Functional Distinction between Human and Mouse Sodium-Coupled Citrate Transporters and Its Biologic Significance: An Attempt for Structural Basis Using a Homology Modeling Approach. Chemical Reviews, 2021, 121, 5359-5377.	23.0	15
7	Consequences of NaCT/SLC13A5/mINDY deficiency: good versus evil, separated only by the blood–brain barrier. Biochemical Journal, 2021, 478, 463-486.	1.7	20
8	SLC6A14 and SLC38A5 Drive the Glutaminolysis and Serine–Glycine–One-Carbon Pathways in Cancer. Pharmaceuticals, 2021, 14, 216.	1.7	39
9	α-Methyl- <scp>l</scp> -tryptophan as a weight-loss agent in multiple models of obesity in mice. Biochemical Journal, 2021, 478, 1347-1358.	1.7	5
10	SLC6A14 deficiency is linked to obesity, fatty liver, and metabolic syndrome but only under conditions of a high-fat diet. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166087.	1.8	13
11	A home run for human NaCT/SLC13A5/INDY: cryo-EM structure and homology model to predict transport mechanisms, inhibitor interactions and mutational defects. Biochemical Journal, 2021, 478, 2051-2057.	1.7	6
12	RAD51AP1 Loss Attenuates Colorectal Cancer Stem Cell Renewal and Sensitizes to Chemotherapy. Molecular Cancer Research, 2021, 19, 1486-1497.	1.5	13
13	PEPT1 is essential for the growth of pancreatic cancer cells: a viable drug target. Biochemical Journal, 2021, 478, 3757-3774.	1.7	10
14	Drosophila INDY and Mammalian INDY: Major Differences in Transport Mechanism and Structural Features despite Mostly Similar Biological Functions. Metabolites, 2021, 11, 669.	1.3	4
15	A Proton-Coupled Transport System for β-Hydroxy-β-Methylbutyrate (HMB) in Blood–Brain Barrier Endothelial Cell Line hCMEC/D3. Nutrients, 2021, 13, 3220.	1.7	3
16	Metformin, valproic acid, and starvation induce seizures in a patient with partial SLC13A5 deficiency: a case of pharmaco-synergistic heterozygosity. Psychiatric Genetics, 2021, 31, 32-35.	0.6	7
17	Dishevelled-1 DIX and PDZ domain lysine residues regulate oncogenic Wnt signaling. Oncotarget, 2021, 12, 2234-2251.	0.8	6
18	TBX2 Drives Neuroendocrine Prostate Cancer through Exosome-Mediated Repression of miR-200c-3p. Cancers, 2021, 13, 5020.	1.7	9

VADIVEL GANAPATHY

#	Article	IF	CITATIONS
19	Expression and function of SLC38A5, an amino acid-coupled Na+/H+ exchanger, in triple-negative breast cancer and its relevance to macropinocytosis. Biochemical Journal, 2021, 478, 3957-3976.	1.7	20
20	OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery <i>inÂvitro</i> , <i>in situ</i> , and <i>inÂvivo</i> . Drug Delivery, 2020, 27, 170-179.	2.5	19
21	Pharmacologic inducers of the uric acid exporter ABCG2 as potential drugs for treatment of gouty arthritis. Asian Journal of Pharmaceutical Sciences, 2020, 15, 173-180.	4.3	29
22	Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. , 2020, 206, 107451.		174
23	Therapeutic application and construction of bilirubin incorporated nanoparticles. Journal of Controlled Release, 2020, 328, 407-424.	4.8	32
24	<i>RAD51AP1</i> Deficiency Reduces Tumor Growth by Targeting Stem Cell Self-Renewal. Cancer Research, 2020, 80, 3855-3866.	0.4	19
25	Extracellular Citrate Fuels Cancer Cell Metabolism and Growth. Frontiers in Cell and Developmental Biology, 2020, 8, 602476.	1.8	25
26	Involvement of a Na+-coupled Oligopeptide Transport System for β-amyloid Peptide (Aβ1–42) in Brain Cells. Pharmaceutical Research, 2020, 37, 98.	1.7	2
27	Chronic exposure to excess iron promotes EMT and cancer via p53 loss in pancreatic cancer. Asian Journal of Pharmaceutical Sciences, 2020, 15, 237-251.	4.3	24
28	Rescue of mutant gonadotropin-releasing hormone receptor function independent of cognate receptor activity. Scientific Reports, 2020, 10, 10579.	1.6	5
29	The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene, 2020, 39, 3292-3304.	2.6	140
30	Endocytosis of ATB ^{0,+} (SLC6A14)-targeted liposomes for drug delivery and its therapeutic application for pancreatic cancer. Expert Opinion on Drug Delivery, 2020, 17, 395-405.	2.4	28
31	The Hepatic Plasma Membrane Citrate Transporter NaCT (SLC13A5) as a Molecular Target for Metformin. Scientific Reports, 2020, 10, 8536.	1.6	18
32	SLC6A14, a Na+/Clâ^'-coupled amino acid transporter, functions as a tumor promoter in colon and is a target for Wnt signaling. Biochemical Journal, 2020, 477, 1409-1425.	1.7	33
33	Synergism between SLC6A14 blockade and gemcitabine in pancreactic cancer: a 1H-NMR-based metabolomic study in pancreatic cancer cells. Biochemical Journal, 2020, 477, 1923-1937.	1.7	12
34	Hereditary hemochromatosis promotes colitis and colon cancer and causes bacterial dysbiosis in mice. Biochemical Journal, 2020, 477, 3867-3883.	1.7	20
35	Functional analysis of a species-specific inhibitor selective for human Na+-coupled citrate transporter (NaCT/SLC13A5/mINDY). Biochemical Journal, 2020, 477, 4149-4165.	1.7	15
36	Hereditary hemochromatosis disrupts uric acid homeostasis and causes hyperuricemia via altered expression/activity of xanthine oxidase and ABCG2. Biochemical Journal, 2020, 477, 1499-1513.	1.7	7

#	Article	IF	CITATIONS
37	Ambidextrous Approach To Disrupt Redox Balance in Tumor Cells with Increased ROS Production and Decreased GSH Synthesis for Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 26722-26730.	4.0	66
38	Renal iron accelerates the progression of diabetic nephropathy in the HFE gene knockout mouse model of iron overload. American Journal of Physiology - Renal Physiology, 2019, 317, F512-F517.	1.3	23
39	Development and radiosynthesis of the first ¹⁸ F″abeled inhibitor of monocarboxylate transporters (MCTs). Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 411-424.	0.5	6
40	Transport Mechanisms for the Nutritional Supplement β-Hydroxy-β-Methylbutyrate (HMB) in Mammalian Cells. Pharmaceutical Research, 2019, 36, 84.	1.7	5
41	Deficiency of Dietary Fiber in <i>Slc5a8</i> -Null Mice Promotes Bacterial Dysbiosis and Alters Colonic Epithelial Transcriptome towards Proinflammatory Milieu. Canadian Journal of Gastroenterology and Hepatology, 2019, 2019, 1-12.	0.8	10
42	Transport of 2,4-dichloro phenoxyacetic acid by human Na+-coupled monocarboxylate transporter 1 (hSMCT1, SLC5A8). Drug Metabolism and Pharmacokinetics, 2019, 34, 95-103.	1.1	4
43	<scp>L</scp> -Carnitine-conjugated nanoparticles to promote permeation across blood–brain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-12.	1.9	64
44	Extracellular Citrate Affects Critical Elements of Cancer Cell Metabolism and Supports Cancer Development <i>In Vivo</i> . Cancer Research, 2018, 78, 2513-2523.	0.4	59
45	Gpr109a Limits Microbiota-Induced IL-23 Production To Constrain ILC3-Mediated Colonic Inflammation. Journal of Immunology, 2018, 200, 2905-2914.	0.4	57
46	Iron Overload Accelerates the Progression of Diabetic Retinopathy in Association with Increased Retinal Renin Expression. Scientific Reports, 2018, 8, 3025.	1.6	52
47	GPR81, a Cell-Surface Receptor for Lactate, Regulates Intestinal Homeostasis and Protects Mice from Experimental Colitis. Journal of Immunology, 2018, 200, 1781-1789.	0.4	99
48	Chemical validation and optimization of pharmacoperones targeting vasopressin type 2 receptor mutant. Biochemical Journal, 2018, 475, 2941-2953.	1.7	5
49	Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types. Frontiers in Pharmacology, 2018, 9, 27.	1.6	184
50	Embryonic lethality in mice due to carnitine transporter OCTN2 defect and placental carnitine deficiency. Placenta, 2018, 69, 71-73.	0.7	4
51	The Na+/Clâ^'-Coupled, Broad-Specific, Amino Acid Transporter SLC6A14 (ATB0,+): Emerging Roles in Multiple Diseases and Therapeutic Potential for Treatment and Diagnosis. AAPS Journal, 2018, 20, 12.	2.2	44
52	Gut Microbiome and Colon Cancer: Role of Bacterial Metabolites and Their Molecular Targets in the Host. Current Colorectal Cancer Reports, 2017, 13, 111-118.	1.0	23
53	Cell-surface G-protein-coupled receptors for tumor-associated metabolites: A direct link to mitochondrial dysfunction in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 246-257.	3.3	53
54	Carbidopa is an activator of aryl hydrocarbon receptor with potential for cancer therapy. Biochemical Journal, 2017, 474, 3391-3402.	1.7	23

#	Article	IF	CITATIONS
55	Hydroxyurea differentially modulates activator and repressors of Î ³ -globin gene in erythroblasts of responsive and non-responsive patients with sickle cell disease in correlation with Index of Hydroxyurea Responsiveness. Haematologica, 2017, 102, 1995-2004.	1.7	12
56	Dual targeting of <scp>l</scp> -carnitine-conjugated nanoparticles to OCTN2 and ATB ^{0,+} to deliver chemotherapeutic agents for colon cancer therapy. Drug Delivery, 2017, 24, 1338-1349.	2.5	62
57	Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporterâ€Targeting Nanoparticles: A Case Study of Highâ€Efficiency SLC22A5 (OCTN2)â€Mediated Carnitineâ€Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs. Advanced Healthcare Materials, 2017, 6, 1700165.	3.9	51
58	Short hain Fatty Acid Transporters: Role in Colonic Homeostasis. , 2017, 8, 299-314.		176
59	Cell-Surface and Nuclear Receptors in the Colon as Targets for Bacterial Metabolites and Its Relevance to Colon Health. Nutrients, 2017, 9, 856.	1.7	52
60	Plasma Membrane Na+-Coupled Citrate Transporter (SLC13A5) and Neonatal Epileptic Encephalopathy. Molecules, 2017, 22, 378.	1.7	62
61	Increased Retinal Expression of the Pro-Angiogenic Receptor GPR91 via BMP6 in a Mouse Model of Juvenile Hemochromatosis. , 2016, 57, 1612.		14
62	Nutrient Transporter Expression in the Jejunum in Relation to Body Mass Index in Patients Undergoing Bariatric Surgery. Nutrients, 2016, 8, 683.	1.7	13
63	Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine. Biochemical Journal, 2016, 473, 1503-1506.	1.7	25
64	Combined Inhibition of DNMT and HDAC Blocks the Tumorigenicity of Cancer Stem-like Cells and Attenuates Mammary Tumor Growth. Cancer Research, 2016, 76, 3224-3235.	0.4	122
65	SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms. Biochemical Journal, 2016, 473, 1113-1124.	1.7	81
66	Oral Monomethyl Fumarate Therapy Ameliorates Retinopathy in a Humanized Mouse Model of Sickle Cell Disease. Antioxidants and Redox Signaling, 2016, 25, 921-935.	2.5	20
67	High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells. European Journal of Pharmacology, 2016, 791, 703-710.	1.7	6
68	Transporter occluded-state conformation-induced endocytosis: Amino acid transporter ATB0,+-mediated tumor targeting of liposomes for docetaxel delivery for hepatocarcinoma therapy. Journal of Controlled Release, 2016, 243, 370-380.	4.8	35
69	Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2531-2539.	1.9	234
70	Changes over time of papillary thyroid carcinoma and total thyroidectomy rates Journal of Clinical Oncology, 2016, 34, e13081-e13081.	0.8	0
71	Retinal Ganglion Cell Loss and Mild Vasculopathy in Methylene Tetrahydrofolate Reductase (Mthfr)-Deficient Mice: A Model of Mild Hyperhomocysteinemia. , 2015, 56, 2684.		28
72	IFNγ Induces DNA Methylation–Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer. Cancer Immunology Research, 2015, 3, 795-805.	1.6	44

#	Article	IF	CITATIONS
73	Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xcâ^', the Na+-independent glutamate–cystine exchanger. Free Radical Biology and Medicine, 2015, 86, 25-36.	1.3	109
74	Deletion of the amino acid transporter Slc6a14 suppresses tumour growth in spontaneous mouse models of breast cancer. Biochemical Journal, 2015, 469, 17-23.	1.7	72
75	Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochemical Journal, 2015, 469, 267-278.	1.7	118
76	Species-Specific Influence of Lithium on the Activity of SLC13A5 (NaCT): Lithium-Induced Activation Is Specific for the Transporter in Primates. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 17-26.	1.3	29
77	DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nature Communications, 2015, 6, 6910.	5.8	204
78	Amino Acid Transporters in Cancer and Their Relevance to "Glutamine Addiction― Novel Targets for the Design of a New Class of Anticancer Drugs. Cancer Research, 2015, 75, 1782-1788.	0.4	374
79	Short, but Smart: SCFAs Train T Cells in the Gut to Fight Autoimmunity in the Brain. Immunity, 2015, 43, 629-631.	6.6	56
80	Interferon-Î ³ induces a tryptophan-selective amino acid transporter in human colonic epithelial cells and mouse dendritic cells. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 453-462.	1.4	45
81	Monomethylfumarate Induces \hat{I}^3 -Globin Expression and Fetal Hemoglobin Production in Cultured Human Retinal Pigment Epithelial (RPE) and Erythroid Cells, and in Intact Retina. , 2014, 55, 5382.		32
82	The amino acid transporter SLC6A14 in cancer and its potential use in chemotherapy. Asian Journal of Pharmaceutical Sciences, 2014, 9, 293-303.	4.3	65
83	Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis. Immunity, 2014, 40, 128-139.	6.6	1,654
84	Deletion of Hemojuvelin, an Iron-Regulatory Protein, in Mice Results in Abnormal Angiogenesis and Vasculogenesis in Retina Along With Reactive Gliosis. , 2014, 55, 3616.		15
85	Alterations of Retinal Vasculature in Cystathionine–β-Synthase Heterozygous Mice. American Journal of Pathology, 2014, 184, 2573-2585.	1.9	42
86	Regulation of the cholesterol efflux transporters ABCA1 and ABCG1 in retina in hemochromatosis and by the endogenous siderophore 2,5-dihydroxybenzoic acid. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 603-612.	1.8	39
87	L-2-oxothiazolidine-4-carboxylic acid attenuates oxidative stress and inflammation in retinal pigment epithelium. Molecular Vision, 2014, 20, 73-88.	1.1	11
88	Retinal expression of the serine protease matriptase-2 (Tmprss6) and its role in retinal iron homeostasis. Molecular Vision, 2014, 20, 561-74.	1.1	8
89	The Cystine/Glutamate Antiporter System x _c ^{â^'} in Health and Disease: From Molecular Mechanisms to Novel Therapeutic Opportunities. Antioxidants and Redox Signaling, 2013, 18, 522-555.	2.5	689
90	Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Current Opinion in Pharmacology, 2013, 13, 869-874.	1.7	229

#	Article	IF	CITATIONS
91	Molecular Mechanism of SLC5A8 Inactivation in Breast Cancer. Molecular and Cellular Biology, 2013, 33, 3920-3935.	1.1	27
92	The plasma membrane transporter SLC5A8 suppresses tumour progression through depletion of survivin without involving its transport function. Biochemical Journal, 2013, 450, 169-178.	1.7	39
93	Loss of <i>Hfe</i> Leads to Progression of Tumor Phenotype in Primary Retinal Pigment Epithelial Cells. , 2013, 54, 63.		19
94	A Molecular Mechanism For Suppression Of Colonic Inflammation By Gut Bacteria. FASEB Journal, 2012, 26, 1156.6.	0.2	0
95	Drugs of abuse and human placenta. Life Sciences, 2011, 88, 926-930.	2.0	59
96	SLC6A14 (ATB0,+) Protein, a Highly Concentrative and Broad Specific Amino Acid Transporter, Is a Novel and Effective Drug Target for Treatment of Estrogen Receptor-positive Breast Cancer. Journal of Biological Chemistry, 2011, 286, 31830-31838.	1.6	157
97	Colonic Gene Expression in Conventional and Germ-Free Mice with a Focus on the Butyrate Receptor GPR109A and the Butyrate Transporter SLC5A8. Journal of Gastrointestinal Surgery, 2010, 14, 449-461.	0.9	127
98	Transport of the Photodynamic Therapy Agent 5-Aminolevulinic Acid by Distinct H ⁺ -Coupled Nutrient Carriers Coexpressed in the Small Intestine. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 220-228.	1.3	49
99	Nutrient transporters in cancer: Relevance to Warburg hypothesis and beyond. , 2009, 121, 29-40.		613
100	Citrate transport and metabolism in mammalian cells. BioEssays, 2009, 31, 10-20.	1.2	116
101	Taurine uptake across the human intestinal brushâ€border membrane is via two transporters: H ⁺ â€coupled PAT1 (SLC36A1) and Na ⁺ †and Cl ^{â^'} â€dependent TauT (SLC6A6). Journal of Physiology, 2009, 587, 731-744.	1.3	106
102	A traffic signal for heterodimeric amino acid transporters to transfer from the ER to the Golgi. Biochemical Journal, 2009, 417, e9-e11.	1.7	3
103	Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3. Biochemical Journal, 2009, 417, 379-389.	1.7	129
104	Sodium-coupled Monocarboxylate Transporters in Normal Tissues and in Cancer. AAPS Journal, 2008, 10, 193-9.	2.2	189
105	Interaction of tryptophan derivatives with SLC6A14 (ATB0,+) reveals the potential of the transporter as a drug target for cancer chemotherapy. Biochemical Journal, 2008, 414, 343-355.	1.7	110
106	3P-216 The role of the acidic residue near PSB in Cl^- pump by Natronomonas pharaonis halorhodopsin(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S161.	0.0	0
107	High―and low apacity taurine transport across the luminal membrane of the small intestinal epithelium. FASEB Journal, 2008, 22, 1202.3.	0.2	1
108	2P302 Mechanism of proton transport via azide-bound halorhodopsin from Natronomonas pharaonis(Native and artificial biomembranes-transport,Poster Presentations). Seibutsu Butsuri, 2007, 47, S188.	0.0	0

#	Article	IF	CITATIONS
109	Expression and functional features of NaCT, a sodium-coupled citrate transporter, in human and rat livers and cell lines. American Journal of Physiology - Renal Physiology, 2007, 292, G402-G408.	1.6	62
110	Transport of Nicotinate and Structurally Related Compounds by Human SMCT1 (SLC5A8) and Its Relevance to Drug Transport in the Mammalian Intestinal Tract. Pharmaceutical Research, 2007, 24, 575-584.	1.7	98
111	Heterologous Expression Systems for Studying Placental Transporters. , 2006, 122, 285-300.		2
112	Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons. Journal of Neurochemistry, 2006, 97, 162-173.	2.1	72
113	Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of l-lactate and ketone bodies in the brain. Journal of Neurochemistry, 2006, 98, 279-288.	2.1	117
114	Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. Journal of Physiology, 2006, 576, 935-946.	1.3	89
115	Up-regulation of the amino acid transporter ATB0,+ (SLC6A14) in carcinoma of the cervix. Gynecologic Oncology, 2006, 100, 8-13.	0.6	94
116	SLC5A8 Triggers Tumor Cell Apoptosis through Pyruvate-Dependent Inhibition of Histone Deacetylases. Cancer Research, 2006, 66, 11560-11564.	0.4	132
117	Identity of the High-Affinity Sodium/Carboxylate Cotransporter NaC3 as the N-Acetyl-L-Aspartate Transporter. , 2006, 576, 67-76.		3
118	Regulation of Reduced-Folate Transporter-1 in Retinal Pigment Epithelial Cells by Folate. Current Eye Research, 2005, 30, 35-44.	0.7	8
119	Role of transporters in placental transfer of drugs. Toxicology and Applied Pharmacology, 2005, 207, 381-387.	1.3	57
120	Regulation of Reduced-Folate Transporter-1 in Retinal Pigment Epithelial Cells by Folate. Current Eye Research, 2005, 30, 35-44.	0.7	7
121	Transport systems for opioid peptides in mammalian tissues. AAPS Journal, 2005, 7, E852-E856.	2.2	51
122	Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1741, 215-223.	1.8	111
123	Functional Identification of SLC5A8, a Tumor Suppressor Down-regulated in Colon Cancer, as a Na+-coupled Transporter for Short-chain Fatty Acids. Journal of Biological Chemistry, 2004, 279, 13293-13296.	1.6	245
124	Functional characterization of brain peptide transporter in rat cerebral cortex: identification of the high-affinity type H+/peptide transporter PEPT2. Brain Research, 2004, 997, 52-61.	1.1	42
125	SLC19: the folate/thiamine transporter family. Pflugers Archiv European Journal of Physiology, 2004, 447, 641-646.	1.3	140
126	Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. Biochemical Journal, 2004, 378, 949-957.	1.7	76

#	Article	IF	CITATIONS
127	Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action. Biochemical Journal, 2003, 374, 21-26.	1.7	67
128	Structure, Function, and Expression Pattern of a Novel Sodium-coupled Citrate Transporter (NaCT) Cloned from Mammalian Brain. Journal of Biological Chemistry, 2002, 277, 39469-39476.	1.6	124
129	Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Biochemical Journal, 2002, 367, 313-319.	1.7	58
130	Transport of d-Serine via the Amino Acid Transporter ATB0,+ Expressed in the Colon. Biochemical and Biophysical Research Communications, 2002, 291, 291-295.	1.0	84
131	Human Na+-coupled citrate transporter: primary structure, genomic organization, and transport function. Biochemical and Biophysical Research Communications, 2002, 299, 465-471.	1.0	120
132	Human Serotonin Transporter: Regulation by the Neuroprotective Agent Aurintricarboxylic Acid and by Epidermal Growth Factor. Journal of Neurochemistry, 2002, 68, 1443-1450.	2.1	18
133	Structure, Function, and Tissue Expression Pattern of Human SN2, a Subtype of the Amino Acid Transport System N. Biochemical and Biophysical Research Communications, 2001, 281, 1343-1348.	1.0	112
134	The adaptive regulation of amino acid transport system A is associated to changes in ATA2 expression. FEBS Letters, 2001, 490, 11-14.	1.3	82
135	Differential influence of cAMP on the expression of the three subtypes (ATA1, ATA2, and ATA3) of the amino acid transport system A. FEBS Letters, 2001, 505, 317-320.	1.3	32
136	Cloning and functional characterization of a new subtype of the amino acid transport system N. American Journal of Physiology - Cell Physiology, 2001, 281, C1757-C1768.	2.1	104
137	Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains. Biochemical Journal, 2001, 355, 725-731.	1.7	43
138	A comparison of caveolae and caveolin-1 to folate receptor alpha in retina and retinal pigment epithelium. The Histochemical Journal, 2001, 33, 149-158.	0.6	20
139	Targeting the sodium-dependent multivitamin transporter (SMVT) for improving the oral absorption properties of a retro-inverso Tat nonapeptide. Pharmaceutical Research, 2001, 18, 950-956.	1.7	59
140	Rapid Report. Journal of Physiology, 2001, 532, 297-304.	1.3	174
141	Growth Factors Regulation of Rabbit Sodiumâ€Đependent Neutral Amino Acid Transporter ATBO and Oligopeptide Transporter 1 mRNAs Expression after Enterectomy. Journal of Parenteral and Enteral Nutrition, 2001, 25, 65-72.	1.3	34
142	Functional Expression of the Serotonin Transporter in Immortalized Rat Brain Microvessel Endothelial Cells. Journal of Neurochemistry, 2000, 74, 1241-1248.	2.1	50
143	Structure, function, and genomic organization of human Na ⁺ -dependent high-affinity dicarboxylate transporter. American Journal of Physiology - Cell Physiology, 2000, 278, C1019-C1030.	2.1	114
144	Primary Structure, Genomic Organization, and Functional and Electrogenic Characteristics of Human System N 1, a Na+- and H+-coupled Glutamine Transporter. Journal of Biological Chemistry, 2000, 275, 23707-23717.	1.6	94

VADIVEL GANAPATHY

#	Article	IF	CITATIONS
145	Cloning of an Amino Acid Transporter with Functional Characteristics and Tissue Expression Pattern Identical to That of System A. Journal of Biological Chemistry, 2000, 275, 16473-16477.	1.6	241
146	Primary Structure and Functional Characteristics of a Mammalian Sodium-coupled High Affinity Dicarboxylate Transporter. Journal of Biological Chemistry, 1999, 274, 3422-3429.	1.6	93
147	Transport of amino acid aryl amides by the intestinal H+/peptide cotransport system, PEPT1. FEBS Journal, 1998, 255, 698-702.	0.2	47
148	Two oligopeptide transporters from Caenorhabditis elegans:molecular cloning and functional expression. Biochemical Journal, 1998, 332, 565-572.	1.7	39
149	Electrophysiological characteristics of the proton-coupled peptide transporter PEPT2 cloned from rat brain. American Journal of Physiology - Cell Physiology, 1998, 275, C967-C975.	2.1	44
150	Exonâ€Intron Structure, Analysis of Promoter Region, and Chromosomal Localization of the Human Type 1 Ïf Receptor Gene. Journal of Neurochemistry, 1998, 70, 443-451.	2.1	143
151	Cloning and Functional Characterization of a lf Receptor from Rat Brain. Journal of Neurochemistry, 1998, 70, 922-931.	2.1	256
152	Localization of peptide transporter in nuclei and lysosomes of the pancreas. International Journal of Gastrointestinal Cancer, 1997, 22, 221-225.	0.4	44
153	Peptide transporters. Current Opinion in Nephrology and Hypertension, 1996, 5, 395-400.	1.0	34
154	Peptide Transporters in the Intestine and the Kidney. Annual Review of Nutrition, 1996, 16, 99-119.	4.3	294
155	Proton/peptide cotransporter (PEPT 2) from human kidney: Functional characterization and chromosomal localization. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1240, 1-4.	1.4	67
156	Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature, 1994, 368, 563-566.	13.7	838
157	Characterization and subtype identification of the Na ⁺ -H ⁺ exchanger in bovine corneal epithelium. Current Eye Research, 1993, 12, 69-76.	0.7	1
158	Proton-coupled solute transport in the animal cell plasma membrane. Current Opinion in Cell Biology, 1991, 3, 695-701.	2.6	50
159	Na++ Clâ^'-gradient-driven, high-affinity, uphill transport of taurine in human placental brush-border membrane vesicles. FEBS Letters, 1988, 231, 263-267.	1.3	66
160	Development of Dipeptide Transport in Rat Renal Brush Border Menbranes: Studies with Glycylsarcosine. Pediatric Research, 1987, 22, 641-646.	1.1	7
161	Protein Digestion and Assimilation. , 0, , 464-477.		4