Marianna Rakszegi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7563291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of Cereal Science, 2009, 49, 290-295.	3.7	423
2	Mutation discovery for crop improvement. Journal of Experimental Botany, 2009, 60, 2817-2825.	4.8	277
3	The HEALTHGRAIN Cereal Diversity Screen: Concept, Results, and Prospects. Journal of Agricultural and Food Chemistry, 2008, 56, 9699-9709.	5.2	218
4	Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9740-9749.	5.2	211
5	Phytochemical and Fiber Components in Oat Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9777-9784.	5.2	152
6	Phytochemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9758-9766.	5.2	150
7	Natural Variation in Grain Composition of Wheat and Related Cereals. Journal of Agricultural and Food Chemistry, 2013, 61, 8295-8303.	5.2	136
8	Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry, 2013, 136, 1243-1248.	8.2	99
9	Environment and Genotype Effects on the Content of Dietary Fiber and Its Components in Wheat in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2010, 58, 9353-9361.	5.2	76
10	Effect of heat and drought stress on the structure and composition of arabinoxylan and β-glucan in wheat grain. Carbohydrate Polymers, 2014, 102, 557-565.	10.2	75
11	Effects of Genotype and Environment on the Content and Composition of Phytochemicals and Dietary Fiber Components in Rye in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2010, 58, 9372-9383.	5.2	73
12	LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity. Frontiers in Plant Science, 2018, 9, 605.	3.6	73
13	Free Amino Acids and Sugars in Rye Grain: Implications for Acrylamide Formation. Journal of Agricultural and Food Chemistry, 2010, 58, 1959-1969.	5.2	67
14	Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress. Plant Cell Reports, 2011, 30, 551-563.	5.6	67
15	Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. Journal of Cereal Science, 2005, 42, 15-23.	3.7	65
16	Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Reports, 2009, 28, 1085-1094.	5.6	62
17	Composition and End-Use Quality of 150 Wheat Lines Selected for the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9750-9757.	5.2	58
18	Postprandial Glycemia, Insulinemia, and Satiety Responses in Healthy Subjects after Whole Grain Rye Bread Made from Different Rye Varieties. 1. Journal of Agricultural and Food Chemistry, 2011, 59, 12139-12148.	5.2	52

MARIANNA RAKSZEGI

#	Article	IF	CITATIONS
19	Genotype and Environment Effects on the Contents of Vitamins B1, B2, B3, and B6 in Wheat Grain. Journal of Agricultural and Food Chemistry, 2011, 59, 10564-10571.	5.2	51
20	Diversity of agronomic and morphological traits in a mutant population of bread wheat studied in the Healthgrain program. Euphytica, 2010, 174, 409-421.	1.2	47
21	Variability in Xylanase and Xylanase Inhibition Activities in Different Cereals in the HEALTHGRAIN Diversity Screen and Contribution of Environment and Genotype to This Variability in Common Wheat. Journal of Agricultural and Food Chemistry, 2010, 58, 9362-9371.	5.2	42
22	Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour. Frontiers in Plant Science, 2017, 8, 1529.	3.6	42
23	Genetics of dietary fibre in bread wheat. Euphytica, 2009, 170, 155.	1.2	41
24	Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene. Journal of Cereal Science, 2008, 47, 310-321.	3.7	40
25	Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R,) Tj ETQq1 1 (0.7 8 4314	rgB39/Overloc
26	¹ Hâ€ <scp>NMR</scp> screening for the highâ€throughput determination of genotype and environmental effects on the content of asparagine in wheat grain. Plant Biotechnology Journal, 2016, 14, 128-139.	8.3	37
27	Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE, 2019, 14, e0211892.	2.5	35
28	Effects of incorporated amaranth albumins on the functional properties of wheat dough. Journal of the Science of Food and Agriculture, 2009, 89, 882-889.	3.5	32
29	Comparison of bread wheat varieties with different breeding origin under organic and low input management. Euphytica, 2014, 199, 69-80.	1.2	29
30	Effect of genotypic, meteorological and agronomic factors on the gluten index of winter durum wheat. Euphytica, 2014, 197, 61-71.	1.2	25
31	Relationship between the Contents of Bioactive Components in Grain and the Release Dates of Wheat Lines in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2011, 59, 928-933.	5.2	24
32	Expression of <i><scp>HvCslF9</scp></i> and <i><scp>HvCslF6</scp></i> barley genes in the genetic background of wheat and their influence on the wheat βâ€glucan content. Annals of Applied Biology, 2013, 163, 142-150.	2.5	23
33	Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. Poultry Science, 2015, 94, 232-239.	3.4	23
34	Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions. Journal of Cereal Science, 2016, 69, 297-305.	3.7	23
35	Do modern types of wheat have lower quality for human health?. Nutrition Bulletin, 2020, 45, 362-373.	1.8	23
36	The Effect of Abiotic Stresses on the Protein Composition of Four Hungarian Wheat Varieties. Plants, 2022, 11, 1.	3.5	23

MARIANNA RAKSZEGI

#	Article	IF	CITATIONS
37	Micronutrient contents and nutritional values of commercial wheat flours and flours of field-grown wheat varieties — A survey in Hungary. Cereal Research Communications, 2014, 42, 293-302.	1.6	20
38	Identification of a major QTL and associated molecular marker for high arabinoxylan fibre in white wheat flour. PLoS ONE, 2020, 15, e0227826.	2.5	20
39	Effect of Combined Changes in Culture Medium and Incubation Conditions on the Regeneration from Immature Embryos of Elite Varieties of Winter Wheat. Plant Cell, Tissue and Organ Culture, 2004, 79, 39-44.	2.3	16
40	Differentially penalized regression to predict agronomic traits from metabolites and markers in wheat. BMC Genetics, 2015, 16, 19.	2.7	16
41	Development and characterization of wheat lines with increased levels of arabinoxylan. Euphytica, 2017, 213, 1.	1.2	16
42	1RS arm of Secale cereanum †Kriszta' confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat. Scientific Reports, 2020, 10, 1792.	3.3	15
43	Modelling water absorption of wheat flour by taking into consideration of the soluble protein and arabinoxylan components. Cereal Research Communications, 2014, 42, 629-639.	1.6	13
44	Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS ONE, 2018, 13, e0206248.	2.5	12
45	Differences in Processing Quality Traits, Protein Content and Composition between Spelt and Bread Wheat Genotypes Grown under Conventional and Organic Production. Foods, 2021, 10, 156.	4.3	12
46	Stability analysis of wheat lines with increased level of arabinoxylan. PLoS ONE, 2020, 15, e0232892.	2.5	11
47	Effects of Organic and Conventional Crop Nutrition on Profiles of Polar Metabolites in Grain of Wheat. Journal of Agricultural and Food Chemistry, 2018, 66, 5346-5351.	5.2	10
48	Starch Properties in Different Lines of an old Hungarian Wheat Variety, Bánkúti 1201. Starch/Staerke, 2003, 55, 397-402.	2.1	9
49	Development and characterization of highâ€amylose wheat lines. Starch/Staerke, 2015, 67, 247-254.	2.1	9
50	Effect of Milling on the Starch Properties of Winter Wheat Genotypes. Starch/Staerke, 2010, 62, 115-122.	2.1	8
51	Possibilities and barriers in fibre-targeted breeding: Characterisation of arabinoxylans in wheat varieties and their breeding lines. Journal of Cereal Science, 2019, 86, 117-123.	3.7	8
52	Variability and cluster analysis of arabinoxylan content and its molecular profile in crossed wheat lines. Journal of Cereal Science, 2020, 95, 103074.	3.7	7
53	Complex rheological characterization of normal, waxy and high-amylose wheat lines. Journal of Cereal Science, 2020, 93, 102982.	3.7	7
54	A novel approach to the characterization of old wheat (<scp><i>Triticum aestivum</i></scp> L.) varieties by complex rheological analysis. Journal of the Science of Food and Agriculture, 2020, 100, 4409-4417.	3.5	6

MARIANNA RAKSZEGI

#	Article	IF	CITATIONS
55	Effect of Multi-Year Environmental and Meteorological Factors on the Quality Traits of Winter Durum Wheat. Plants, 2022, 11, 113.	3.5	6
56	ldentification of New QTLs for Dietary Fiber Content in Aegilops biuncialis. International Journal of Molecular Sciences, 2022, 23, 3821.	4.1	6
57	Characterization of the Protein and Carbohydrate Related Quality Traits of a Large Set of Spelt Wheat Genotypes. Foods, 2022, 11, 2061.	4.3	6
58	Study of the LMW Glutenin subunits of some old Hungarian wheat cultivars. Cereal Research Communications, 1999, 27, 293-299.	1.6	5
59	Effect of high temperature and drought on the composition of gluten proteins in Martonvásár wheat varieties. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2010, 58, 343-353.	0.2	5
60	Distribution of dwarfing genes (Rht-B1b and Rht-D1b) in Martonvásár wheat breeding materials. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2011, 59, 249-254.	0.2	5
61	Evaluation of genetic diversity of spelt breeding materials based on AFLP and quality analyses. Cereal Research Communications, 2012, 40, 185-193.	1.6	5
62	Rheological Hardness Index for Assessing Hardness of Hexaploids and Durums. Cereal Chemistry, 2013, 90, 430-438.	2.2	4
63	Addition of chromosome 4R from Hungarian rye cultivar Lovászpatonai confers resistance to stripe rust and outstanding end-use quality in wheat. Journal of Cereal Science, 2016, 71, 204-206.	3.7	4
64	Editorial: Aegilops: Promising Genesources to Improve Agronomical and Quality Traits of Wheat. Frontiers in Plant Science, 2020, 11, 1060.	3.6	4
65	Puroindoline genes and proteins in tetraploid and hexaploid species of Triticum. Journal of Cereal Science, 2009, 49, 202-211.	3.7	3
66	Stability analysis of wheat populations and mixtures based on the physical, compositional and processing properties of the seeds. Cereal Research Communications, 2016, 44, 694-705.	1.6	3
67	Dataset on the mean, standard deviation, broad-sense heritability and stability of wheat quality bred in three different ways and grown under organic and low-input conventional systems. Data in Brief, 2016, 7, 1617-1632.	1.0	3
68	Selection of winter durum genotypes grown under conventional and organic conditions in different European regions. Euphytica, 2017, 213, 1.	1.2	3
69	Study of the LMW glutenin composition of some old Hungarian wheat cultivars using capillary electrophoresis. Cereal Research Communications, 2000, 28, 417-424.	1.6	2
70	Genetic modification of cereals in the Agricultural Research Institute of the Hungarian Academy of Sciences. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2008, 56, 443-448.	0.2	1
71	Application of a rapid electrophoresis technique analysing the glutenin subunit composition of wheat genotypes. Cereal Research Communications, 2013, 41, 468-481.	1.6	1
72	Comparative Screening of Phytochemicals in Egyptian and Hungarian Wheat Varieties. International Journal of Agricultural Research, 2014, 9, 219-230.	0.1	1

#	Article	IF	CITATIONS
73	Design and Management of Field Trials of Transgenic Cereals. Methods in Molecular Biology, 2009, 478, 305-314.	0.9	1
74	Breeding for Grain-Quality Traits. , 2017, , 425-452.		0
75	COMBINING BIOACTIVE COMPONENTS WITH CONVENTIONAL TARGETS IN PLANT BREEDING PROGRAMMES. , 2009, , 263-272.		0
76	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0
77	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0
78	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0
79	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0