Francisco M Cazorla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7562917/publications.pdf

Version: 2024-02-01

91 papers 4,312 citations

36 h-index 62 g-index

95 all docs 95 docs citations 95 times ranked 3801 citing authors

#	Article	IF	CITATIONS
1	The Iturin and Fengycin Families of Lipopeptides Are Key Factors in Antagonism of Bacillus subtilis Toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 2007, 20, 430-440.	2.6	553
2	Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology, 2007, 103, 1950-1959.	3.1	240
3	Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control. Plant Disease, 2007, 91, 4-17.	1.4	154
4	Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant and Soil, 2011, 340, 505-520.	3.7	143
5	Biocontrol of Avocado Dematophora Root Rot by Antagonistic Pseudomonas fluorescens PCL1606 Correlates With the Production of 2-Hexyl 5-Propyl Resorcinol. Molecular Plant-Microbe Interactions, 2006, 19, 418-428.	2.6	135
6	The Iturin-like Lipopeptides Are Essential Components in the Biological Control Arsenal of <i>Bacillus subtilis</i> Against Bacterial Diseases of Cucurbits. Molecular Plant-Microbe Interactions, 2011, 24, 1540-1552.	2.6	132
7	Enhancing Soil Quality and Plant Health Through Suppressive Organic Amendments. Diversity, 2012, 4, 475-491.	1.7	128
8	Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Applied Microbiology and Biotechnology, 2004, 64, 263-269.	3.6	109
9	The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nature Communications, 2019, 10, 1919.	12.8	102
10	Copper Resistance in Pseudomonas syringae Strains Isolated from Mango Is Encoded Mainly by Plasmids. Phytopathology, 2002, 92, 909-916.	2.2	83
11	Two similar enhanced rootâ€colonizing <i>Pseudomonas</i> strains differ largely in their colonization strategies of avocado roots and <i>Rosellinia necatrix</i> hyphae. Environmental Microbiology, 2008, 10, 3295-3304.	3.8	83
12	Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouseâ€grown melon. Plant Pathology, 2007, 56, 976-986.	2.4	81
13	GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Genetics and Biology, 2009, 46, 137-145.	2.1	80
14	Up-Regulation and Localization of Asparagine Synthetase in Tomato Leaves Infected by the Bacterial Pathogen Pseudomonas syringae. Plant and Cell Physiology, 2004, 45, 770-780.	3.1	77
15	Bacterial Apical Necrosis of Mango in Southern Spain: A Disease Caused by Pseudomonas syringae pv. syringae. Phytopathology, 1998, 88, 614-620.	2.2	71
16	Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils. Plant and Soil, 2012, 357, 215-226.	3.7	68
17	Diversity of phytobeneficial traits revealed by wholeâ€genome analysis of worldwideâ€isolated phenazineâ€producing <i>Pseudomonas</i> spp Environmental Microbiology, 2019, 21, 437-455.	3.8	66
18	Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinothricin treatment. Planta, 1998, 206, 426-434.	3.2	65

#	Article	IF	CITATIONS
19	Developing tools to unravel the biological secrets of <i>Rosellinia necatrix</i> , an emergent threat to woody crops. Molecular Plant Pathology, 2012, 13, 226-239.	4.2	63
20	Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant and Soil, 2012, 358, 201-212.	3.7	58
21	The <i>dar</i> Genes of <i>Pseudomonas chlororaphis</i> PCL1606 Are Crucial for Biocontrol Activity via Production of the Antifungal Compound 2-Hexyl, 5-Propyl Resorcinol. Molecular Plant-Microbe Interactions, 2013, 26, 554-565.	2.6	56
22	Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcPCL1606. Frontiers in Microbiology, 2019, 10, 719.	3.5	55
23	Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological Research, 2003, 107, 64-71.	2.5	50
24	Role of 2-hexyl, 5-propyl resorcinol production by <i>Pseudomonas chlororaphis</i> PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. FEMS Microbiology Ecology, 2014, 89, 20-31.	2.7	50
25	Comparative Genomic Analysis of <i>Pseudomonas chlororaphis</i> Antifungal Compounds Involved in Biocontrol. Molecular Plant-Microbe Interactions, 2015, 28, 249-260.	2.6	50
26	Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthesis. Physiological and Molecular Plant Pathology, 2003, 63, 117-127.	2.5	49
27	Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon–powdery mildew (Podosphaera fusca) interactions. Journal of Plant Physiology, 2008, 165, 1895-1905.	3.5	49
28	Comparison of microbial tests for the detection of heavy metal genotoxicity. Archives of Environmental Contamination and Toxicology, 1995, 29, 260-265.	4.1	48
29	Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells. Frontiers in Microbiology, 2016, 7, 4.	3.5	48
30	Biological control of tree and woody plant diseases: an impossible task?. BioControl, 2016, 61, 233-242.	2.0	48
31	Recruitment and Rearrangement of Three Different Genetic Determinants into a Conjugative Plasmid Increase Copper Resistance in Pseudomonas syringae. Applied and Environmental Microbiology, 2013, 79, 1028-1033.	3.1	46
32	The role of organic amendments to soil for crop protection: Induction of suppression of soilborne pathogens. Annals of Applied Biology, 2020, 176, 1-15.	2.5	46
33	Chemical and Metabolic Aspects of Antimetabolite Toxins Produced by Pseudomonas syringae Pathovars. Toxins, 2011, 3, 1089-1110.	3.4	45
34	Organic Amendments to Avocado Crops Induce Suppressiveness and Influence the Composition and Activity of Soil Microbial Communities. Applied and Environmental Microbiology, 2015, 81, 3405-3418.	3.1	43
35	Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. Journal of Applied Microbiology, 2010, 109, 65-78.	3.1	42
36	A Nonribosomal Peptide Synthetase Gene (mgoA) of Pseudomonas syringae pv. syringae Is Involved in Mangotoxin Biosynthesis and Is Required for Full Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 500-509.	2.6	40

#	Article	IF	Citations
37	Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. European Journal of Plant Pathology, 2014, 138, 751-762.	1.7	40
38	Metabolic responses of avocado plants to stress induced by Rosellinia necatrix analysed by fluorescence and thermal imaging. European Journal of Plant Pathology, 2015, 142, 625-632.	1.7	37
39	The mbo Operon Is Specific and Essential for Biosynthesis of Mangotoxin in Pseudomonas syringae. PLoS ONE, 2012, 7, e36709.	2.5	35
40	Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge―of the Pseudomonas syringae Complex. Frontiers in Plant Science, 2019, 10, 570.	3.6	35
41	The Compound 2-Hexyl, 5-Propyl Resorcinol Has a Key Role in Biofilm Formation by the Biocontrol Rhizobacterium Pseudomonas chlororaphis PCL1606. Frontiers in Microbiology, 2019, 10, 396.	3.5	35
42	Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Research in Microbiology, 2007, 158, 463-470.	2.1	33
43	THE INHIBITION OF METHANOGENIC ACTIVITY FROM ANAEROBIC DOMESTIC SLUDGES AS A SIMPLE TOXICITY BIOASSAY. Water Research, 1998, 32, 1338-1342.	11.3	32
44	Heavy metal toxicity and genotoxicity in water and sewage determined by microbiological methods. Environmental Toxicology and Chemistry, 2000, 19, 1552-1558.	4.3	32
45	Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production. BMC Microbiology, 2012, 12, 10.	3.3	32
46	Contribution of mangotoxin to the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. International Microbiology, 2009, 12, 87-95.	2.4	31
47	A <i>Pseudomonas syringae</i> Diversity Survey Reveals a Differentiated Phylotype of the Pathovar <i>syringae</i> Associated with the Mango Host and Mangotoxin Production. Phytopathology, 2013, 103, 1115-1129.	2.2	30
48	Environmentally friendly treatment alternatives to Bordeaux mixture for controlling bacterial apical necrosis (BAN) of mango. Plant Pathology, 2012, 61, 665-676.	2.4	29
49	The Mangotoxin Biosynthetic Operon (<i>mbo</i>) Is Specifically Distributed within Pseudomonas syringae Genomospecies 1 and Was Acquired Only Once during Evolution. Applied and Environmental Microbiology, 2013, 79, 756-767.	3.1	29
50	Interaction of antifungal peptide BP15 with Stemphylium vesicarium, the causal agent of brown spot of pear. Fungal Biology, 2016, 120, 61-71.	2.5	29
51	Induction of defense-related genes in tomato plants after treatments with the biocontrol agents Pseudomonas chlororaphis ToZa7 and Clonostachys rosea IK726. Archives of Microbiology, 2020, 202, 257-267.	2.2	29
52	Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl-like polysaccharide. Npj Biofilms and Microbiomes, 2020, 6, 37.	6.4	27
53	First Report of Mango Malformation Disease Caused by <i>Fusarium mangiferae</i> in Spain. Plant Disease, 2012, 96, 286-286.	1.4	26
54	Cellulose production in <i>Pseudomonas syringae</i> pv. <i>syringae</i> : a compromise between epiphytic and pathogenic lifestyles. FEMS Microbiology Ecology, 2015, 91, fiv071.	2.7	25

#	Article	IF	CITATIONS
55	Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle. PLoS ONE, 2015, 10, e0136101.	2.5	25
56	Light-dependent changes of tomato glutamine synthetase in response to Pseudomonas syringae infection or phosphinothricin treatment. Physiologia Plantarum, 1998, 102, 377-384.	5.2	24
57	Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biological Control, 2013, 67, 94-100.	3.0	24
58	Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA. BMC Microbiology, 2014, 14, 46.	3.3	24
59	Field evaluation of treatments for the control of the bacterial apical necrosis of mango (Mangifera) Tj $ETQq1\ 1$ 279-288.	0.784314 r 1.7	gBT /Overloc 23
60	Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics, 2017, 18, 365.	2.8	23
61	Beyond the Wall: Exopolysaccharides in the Biofilm Lifestyle of Pathogenic and Beneficial Plant-Associated Pseudomonas. Microorganisms, 2021, 9, 445.	3.6	23
62	Detection of White Root Rot in Avocado Trees by Remote Sensing. Plant Disease, 2019, 103, 1119-1125.	1.4	22
63	62-kb Plasmids Harboring rulAB Homologues Confer UV-tolerance and Epiphytic Fitness to Pseudomonas syringae pv. syringae Mango Isolates. Microbial Ecology, 2008, 56, 283-291.	2.8	21
64	Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Research in Microbiology, 2017, 168, 583-593.	2.1	21
65	<i>Pantoea agglomerans</i> as a New Etiological Agent of a Bacterial Necrotic Disease of Mango Trees. Phytopathology, 2019, 109, 17-26.	2.2	20
66	Combination of low concentrations of fluazinam and antagonistic rhizobacteria to control avocado white root rot. Biological Control, 2019, 136, 103996.	3.0	20
67	Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot. International Microbiology, 2017, 20, 95-104.	2.4	19
68	Transcriptome analysis of the fungal pathogen Rosellinia necatrix during infection of a susceptible avocado rootstock identifies potential mechanisms of pathogenesis. BMC Genomics, 2019, 20, 1016.	2.8	18
69	Rapid respirometric toxicity test: Sensitivity to metals. Bulletin of Environmental Contamination and Toxicology, 1993, 50, 703-708.	2.7	17
70	Soil Application of a Formulated Biocontrol Rhizobacterium, Pseudomonas chlororaphis PCL1606, Induces Soil Suppressiveness by Impacting Specific Microbial Communities. Frontiers in Microbiology, 2020, 11, 1874.	3.5	17
71	Occurrence of Resistance to Antibiotics and Metals and of Plasmids in Bacterial Strains Isolated from Marine Environments. Water Science and Technology, 1993, 27, 475-478.	2.5	15
72	Genes Involved in the Production of Antimetabolite Toxins by Pseudomonas syringae Pathovars. Genes, 2011, 2, 640-660.	2.4	15

#	Article	IF	CITATIONS
73	Analysis of Genetic Diversity of <i>Fusarium tupiense, </i> the Main Causal Agent of Mango Malformation Disease in Southern Spain. Plant Disease, 2016, 100, 276-286.	1.4	13
74	A method for estimation of population densities of ice nucleating active <i>Pseudomonas syringae</i> in buds and leaves of mango. Journal of Applied Bacteriology, 1995, 79, 341-346.	1.1	12
75	Aer Receptors Influence the Pseudomonas chlororaphis PCL1606 Lifestyle. Frontiers in Microbiology, 2020, 11, 1560.	3.5	11
76	First Report of Bacterial Leaf Spot (Pseudomonas syringae pv. coriandricola) of Coriander in Spain. Journal of Phytopathology, 2005, 153, 181-184.	1.0	10
77	Sclerotization as a long-term preservation method for Rosellinia necatrix strains. Mycoscience, 2012, 53, 460-465.	0.8	10
78	Role of extracellular matrix components in the formation of biofilms and their contribution to the biocontrol activity of <i>Pseudomonas chlororaphis</i> i 0. i 0. i 0. i 0. i 0. Environmental Microbiology, 2021, 23, 2086-2101.	3.8	9
79	Mitigation of <i>Pseudomonas syringae</i> virulence by signal inactivation. Science Advances, 2021, 7, eabg2293.	10.3	8
80	darR and darS are regulatory genes that modulate 2-hexyl, 5-propyl resorcinol transcription in Pseudomonas chlororaphis PCL1606. Microbiology (United Kingdom), 2014, 160, 2670-2680.	1.8	7
81	Draft Genome Sequence of the Rhizobacterium Pseudomonas chlororaphis PCL1601, Displaying Biocontrol against Soilborne Phytopathogens. Genome Announcements, 2017, 5, .	0.8	6
82	A Large Tn <i>7</i> -like Transposon Confers Hyperresistance to Copper in <i>Pseudomonas syringae</i> pv. syringae. Applied and Environmental Microbiology, 2021, 87, .	3.1	6
83	Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Applied and Environmental Microbiology, 2019, 85, .	3.1	5
84	The Rhizobacterium Pseudomonas alcaligenes AVO110 Induces the Expression of Biofilm-Related Genes in Response to Rosellinia necatrix Exudates. Microorganisms, 2021, 9, 1388.	3.6	4
85	Pseudomonas syringae pv. syringae as Microorganism Involved in Apical Necrosis of Mango: Characterization of Some Virulence Factors. Developments in Plant Pathology, 1997, , 82-87.	0.1	4
86	First Report of <i>Pantoea ananatis</i> Causing Necrotic Symptoms in Mango Trees in the Canary Islands, Spain. Plant Disease, 2019, 103, 1017.	1.4	2
87	Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. International Microbiology, 2022, 25, 679-689.	2.4	2
88	Characterization of Fusarium mangiferae isolates from mango malformation disease in Southern Spain. European Journal of Plant Pathology, 2014, 139, 253.	1.7	1
89	Understanding Bacterial Physiology for Improving Full Fitness. Progress in Biological Control, 2020, , 47-60.	0.5	1
90	Microbial analysis of soils from avocado crop modified by organic amendments. , 2010, , .		0

ARTICLE IF CITATIONS

91 Aspects about virulence and epiphytic fitness of Pseudomonas syringae pv. syringae strains isolated from mango trees., 2010, , .