Jian-Dong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7562872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews, 2019, 379, 147-160.	9.5	353
2	Phthalocyanineâ€Assembled Nanodots as Photosensitizers for Highly Efficient Typeâ€I Photoreactions in Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 9885-9890.	7.2	307
3	Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discovery Today, 2014, 19, 502-509.	3.2	280
4	New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chemical Science, 2018, 9, 2098-2104.	3.7	164
5	<i>In Vivo</i> Albumin Traps Photosensitizer Monomers from Self-Assembled Phthalocyanine Nanovesicles: A Facile and Switchable Theranostic Approach. Journal of the American Chemical Society, 2019, 141, 1366-1372.	6.6	153
6	Facile Supramolecular Approach to Nucleic-Acid-Driven Activatable Nanotheranostics That Overcome Drawbacks of Photodynamic Therapy. ACS Nano, 2018, 12, 681-688.	7.3	149
7	Phthalocyanines as contrast agents for photothermal therapy. Coordination Chemistry Reviews, 2021, 426, 213548.	9.5	118
8	A Tumor-pH-Responsive Supramolecular Photosensitizer for Activatable Photodynamic Therapy with Minimal <i>In Vivo</i> Skin Phototoxicity. Theranostics, 2017, 7, 2746-2756.	4.6	117
9	New Amphiphilic Silicon(IV) Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy: Synthesis, Photophysical Properties, and in vitro Photodynamic Activities. Chemistry - A European Journal, 2004, 10, 4831-4838.	1.7	114
10	Nanostructured Phthalocyanine Assemblies with Efficient Synergistic Effect of Type I Photoreaction and Photothermal Action to Overcome Tumor Hypoxia in Photodynamic Therapy. Journal of the American Chemical Society, 2021, 143, 13980-13989.	6.6	107
11	Photophysics and Nonlinear Absorption of Peripheral-Substituted Zinc Phthalocyanines. Journal of Physical Chemistry A, 2008, 112, 7200-7207.	1.1	89
12	Glycosylated zinc(ii) phthalocyanines as efficient photosensitisers for photodynamic therapy. Synthesis, photophysical properties and in vitro photodynamic activity. Organic and Biomolecular Chemistry, 2008, 6, 2173.	1.5	85
13	In Vivo-assembled phthalocyanine/albumin supramolecular complexes combined with a hypoxia-activated prodrug for enhanced photodynamic immunotherapy of cancer. Biomaterials, 2021, 266, 120430.	5.7	75
14	Halogenated silicon(iv) phthalocyanines with axial poly(ethylene glycol) chains. Synthesis, spectroscopic properties, complexation with bovine serum albumin and in vitro photodynamic activitiesDedicated to Prof. Malcolm L. H. Green on the occasion of his retirement, with our warmest congratulations New Journal of Chemistry, 2004, 28, 348.	1.4	69
15	Synthesis and biological characterization of novel rose bengal derivatives with improved amphiphilicity for sono-photodynamic therapy. European Journal of Medicinal Chemistry, 2018, 145, 86-95.	2.6	69
16	A pHâ€Responsive Layered Double Hydroxide (LDH)–Phthalocyanine Nanohybrid for Efficient Photodynamic Therapy. Chemistry - A European Journal, 2015, 21, 3310-3317.	1.7	68
17	A non-aggregated and tumour-associated macrophage-targeted photosensitiser for photodynamic therapy: a novel zinc(<scp>ii</scp>) phthalocyanine containing octa-sulphonates. Chemical Communications, 2015, 51, 4704-4707.	2.2	63
18	Novel silicon phthalocyanines axially modified by morpholine: Synthesis, complexation with serum protein and in vitro photodynamic activity. Inorganic Chemistry Communication, 2006, 9, 473-477.	1.8	60

JIAN-DONG HUANG

#	Article	IF	CITATIONS
19	A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy. European Journal of Medicinal Chemistry, 2017, 127, 200-209.	2.6	59
20	Progress in the development of nanosensitizers for X-ray-induced photodynamic therapy. Drug Discovery Today, 2018, 23, 1791-1800.	3.2	58
21	Preparation and in vitro photodynamic activities of novel axially substituted silicon (IV) phthalocyanines and their bovine serum albumin conjugates. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2450-2453.	1.0	57
22	Phthalocyanineâ€Assembled Nanodots as Photosensitizers for Highly Efficient Typeâ€I Photoreactions in Photodynamic Therapy. Angewandte Chemie, 2018, 130, 10033-10038.	1.6	56
23	Highly positive-charged zinc(II) phthalocyanine as non-aggregated and efficient antifungal photosensitizer. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2386-2389.	1.0	51
24	Synthesis and in vitro photodynamic activity of new hexadeca-carboxy phthalocyanines. Chemical Communications, 2004, , 2236.	2.2	50
25	Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate. Ultrasonics Sonochemistry, 2015, 22, 125-131.	3.8	46
26	Comparison between non-peripherally and peripherally tetra-substituted zinc (II) phthalocyanines as photosensitizers: Synthesis, spectroscopic, photochemical and photobiological properties. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 23-31.	2.0	43
27	Synthesis and antifungal photodynamic activities of a series of novel zinc(II) phthalocyanines substituted with piperazinyl moieties. Dyes and Pigments, 2013, 99, 185-191.	2.0	42
28	The first silicon(iv) phthalocyanine–nucleoside conjugates with high photodynamic activity. Dalton Transactions, 2013, 42, 10398.	1.6	42
29	Mono- and tetra-substituted zinc(II) phthalocyanines containing morpholinyl moieties: Synthesis, antifungal photodynamic activities, and structure-activity relationships. European Journal of Medicinal Chemistry, 2016, 114, 380-389.	2.6	42
30	Photodynamic inactivation of Candida albicans sensitized by a series of novel axially di-substituted silicon (IV) phthalocyanines. Dyes and Pigments, 2013, 96, 547-553.	2.0	41
31	Size-Tunable Targeting-Triggered Nanophotosensitizers Based on Self-Assembly of a Phthalocyanine–Biotin Conjugate for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 36435-36443.	4.0	40
32	Metal phthalocyanine as photosensitizer for photodynamic therapy (PDT). Science in China Series B: Chemistry, 2001, 44, 113-122.	0.8	39
33	Potential sonodynamic anticancer activities of artemether and liposome-encapsulated artemether. Chemical Communications, 2015, 51, 4681-4684.	2.2	39
34	Preparation and in vitro photodynamic activity of novel silicon(IV) phthalocyanines conjugated to serum albumins. Journal of Inorganic Biochemistry, 2006, 100, 946-951.	1.5	35
35	A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy. Biomaterials Science, 2019, 7, 211-219.	2.6	35
36	Novel silicon(IV) phthalocyanines containing piperidinyl moieties: Synthesis and inÂvitro antifungal photodynamic activities. Dyes and Pigments, 2015, 112, 311-316.	2.0	34

JIAN-DONG HUANG

#	Article	IF	CITATIONS
37	Aggregationâ€Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
38	Highly photostable silicon(IV) phthalocyanines containing adamantane moieties: synthesis, structure, and properties. Tetrahedron, 2010, 66, 9041-9048.	1.0	32
39	C-Phycocyanin as a tumour-associated macrophage-targeted photosensitiser and a vehicle of phthalocyanine for enhanced photodynamic therapy. Chemical Communications, 2017, 53, 4112-4115.	2.2	30
40	Water-Soluble Phthalocyanines Selectively Bind to Albumin Dimers: A Green Approach Toward Enhancing Tumor-Targeted Photodynamic Therapy. Theranostics, 2019, 9, 6412-6423.	4.6	30
41	A non-aggregated zinc(II) phthalocyanine with hexadeca cations for antitumor and antibacterial photodynamic therapies. Journal of Photochemistry and Photobiology B: Biology, 2020, 213, 112086.	1.7	30
42	Carboxymethyl chitosan-zinc(II) phthalocyanine conjugates: Synthesis, characterization and photodynamic antifungal therapy. Carbohydrate Polymers, 2020, 235, 115949.	5.1	29
43	Comparison between amine-terminated phthalocyanines and their chlorambucil conjugates: Synthesis, spectroscopic properties, and inÂvitro anticancer activity. Tetrahedron, 2017, 73, 378-384.	1.0	27
44	Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates. European Journal of Medicinal Chemistry, 2018, 155, 24-33.	2.6	26
45	Silicon(IV) phthalocyanines substituted axially with different nucleoside moieties. Effects of nucleoside type on the photosensitizing efficiencies and in vitro photodynamic activities. Journal of Photochemistry and Photobiology B: Biology, 2016, 159, 196-204.	1.7	24
46	A novel silicon(IV) phthalocyanine-oligopeptide conjugate as a highly efficient photosensitizer for photodynamic antimicrobial therapy. Dyes and Pigments, 2020, 172, 107834.	2.0	23
47	Discovery of two aminoglycoside antibiotics as inhibitors targeting the menin–mixed lineage leukaemia interface. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2090-2093.	1.0	22
48	Novel unsymmetrical silicon(IV) phthalocyanines as highly potent anticancer photosensitizers. Synthesis, characterization, and in vitro photodynamic activities. Dyes and Pigments, 2020, 177, 108286.	2.0	20
49	Highly photocytotoxic silicon(IV) phthalocyanines axially modified with l-tyrosine derivatives: Effects of mode of axial substituent connection and of formulation on photodynamic activity. Dyes and Pigments, 2017, 141, 521-529.	2.0	19
50	Preparation and antifungal properties of monosubstituted zinc(ĐŸ) phthalocyanine-chitosan oligosaccharide conjugates and their quaternized derivatives. Dyes and Pigments, 2018, 159, 439-448.	2.0	17
51	Phycocyanin fluorescent probe from Arthrospira platensis: preparation and application in LED-CCD fluorescence density strip qualitative detection system. Journal of Applied Phycology, 2019, 31, 1107-1115.	1.5	16
52	A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127164.	1.0	16
53	A phthalocyanine-based liposomal nanophotosensitizer with highly efficient tumor-targeting and photodynamic activity. Dyes and Pigments, 2020, 180, 108455.	2.0	15
54	Noncovalent Indocyanine Green Conjugate of C-Phycocyanin: Preparation and Tumor-Associated Macrophages-Targeted Photothermal Therapeutics. Bioconjugate Chemistry, 2020, 31, 1438-1448.	1.8	15

JIAN-DONG HUANG

#	Article	IF	CITATIONS
55	Phthalocyanine-based photosensitizers combined with anti-PD-L1 for highly efficient photodynamic immunotherapy. Dyes and Pigments, 2021, 185, 108907.	2.0	15
56	The substituted zinc(II) phthalocyanines using "sulfur bridge―as the linkages. Synthesis, red-shifted spectroscopic properties and structure-inherent targeted photodynamic activities. Dyes and Pigments, 2021, 189, 109270.	2.0	15
57	Synthesis, Supramolecular Behavior, and In Vitro Photodynamic Activities of Novel Zinc(II) Phthalocyanines "Sideâ€strapped―with Crown Ether Bridges. Chemistry - an Asian Journal, 2013, 8, 3063-3070.	1.7	13
58	A Silicon(IV) Phthalocyanine–Folate Conjugate as an Efficient Photosensitizer. Chemistry Letters, 2014, 43, 1701-1703.	0.7	13
59	Alginate-zinc (II) phthalocyanine conjugates: Synthesis, characterization and tumor-associated macrophages-targeted photodynamic therapy. Carbohydrate Polymers, 2020, 240, 116239.	5.1	13
60	The effects of formulation and serum albumin on the inÂvitro photodynamic activity of zinc(II) phthalocyanines substituted with sulfonated quinolineoxy groups. Dyes and Pigments, 2016, 128, 215-225.	2.0	12
61	A pH-sensitive nanoagent self-assembled from a highly negatively-charged phthalocyanine with excellent biosafety for photothermal therapy. Journal of Materials Chemistry B, 2021, 9, 2845-2853.	2.9	11
62	Synthesis and photobiological properties of novel silicon(IV) phthalocyanines axially modified by paracetamol and 4-hydroxyphenylacetamide. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1227-1232.	0.4	9
63	Syntheses, crystal structures and antimicrobial activities of Cu(<scp>ii</scp>), Ru(<scp>ii</scp>), and Pt(<scp>ii</scp>) compounds with an anthracene-containing tripodal ligand. RSC Advances, 2015, 5, 10521-10528.	1.7	9
64	Copper(II) and platinum(II) compounds with pyrene-appended dipicolylamine ligand: syntheses, crystal structures and biological evaluation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 135-143.	0.9	7
65	Protection of COOH and OH groups in acid, base and salt free reactions. Green Chemistry, 2018, 20, 1444-1447.	4.6	7
66	Efficient synthesis of new asymmetric tripodal ligands using microwave irradiation, and their crystal structures. RSC Advances, 2014, 4, 42211-42214.	1.7	6
67	Study of the Edge-on Self-Assembly of Axially Substituted Silicon(IV) Phthalocyanine Derivatives in a Template on the HOPG Surface. Langmuir, 2015, 31, 13394-13401.	1.6	6
68	Synthesis, Spectroscopic and Fibroblast Activation Protein (FAP)â€Responsive Properties of Phthalocyanineâ€Doxorubicin Conjugates. ChemistrySelect, 2018, 3, 5405-5411.	0.7	6
69	Artesunate-Based Multifunctional Nanoplatform for Photothermal/Photoinduced Thermodynamic Synergistic Anticancer Therapy. ACS Applied Bio Materials, 2020, 3, 7876-7885.	2.3	6
70	Nanostructured self-assemblies of photosensitive dyes: green and efficient theranostic approaches. Green Chemical Engineering, 2023, 4, 399-416.	3.3	5
71	Synthesis, characterization and properties of some metallophthalocyanine complexes substituted by N -piperidineethanol. Journal of Coordination Chemistry, 2008, 61, 2315-2324.	0.8	4
72	A phthalocyanine-based self-assembled nanophotosensitizer for efficient in vivo photodynamic anticancer therapy. Journal of Inorganic Biochemistry, 2021, 217, 111371.	1.5	4

#	Article	IF	CITATIONS
73	Molecular and Supramolecular Approach to Highly Photocytotoxic Phthalocyanines with Dual Cell Uptake Pathways and Albumin-Enhanced Tumor Targeting. ACS Applied Materials & Interfaces, 2022, 14, 28581-28590.	4.0	4
74	The syntheses, characterization and properties of some metallophthalocyanine complexes substituted by (N-(2-hydroxyethyl)piperazine)-N′-2-ethane sulfonic acid (HEPES). Dyes and Pigments, 2008, 77, 584-589.	2.0	3
75	Enhancement of biomass production and productivity of Arthrospira platensis GMPA7 using response surface monitoring methodology and turbidostatic cultivation strategy. Journal of Applied Phycology, 2021, 33, 755-763.	1.5	3
76	Solid-state supramolecular structures and excellent photothermal activities of dimeric zinc(II) phthalocyanines axially bridged with bipyridine derivatives. Dyes and Pigments, 2022, 199, 110037.	2.0	3
77	Aggregationâ€Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angewandte Chemie, 2022, 134, .	1.6	2
78	Frontispiece: Aggregationâ€Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angewandte Chemie - International Edition, 2022, 61, .	7.2	1
79	Frontispiz: Aggregationâ€Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angewandte Chemie, 2022, 134, .	1.6	0