
Joshua Fessel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7562761/publications.pdf Version: 2024-02-01

LOSHUA FESSEL

#	Article	IF	CITATIONS
1	Enhanced Expression of Catalase in Mitochondria Modulates NF-κB–Dependent Lung Inflammation through Alteration of Metabolic Activity in Macrophages. Journal of Immunology, 2020, 205, 1125-1134.	0.4	13
2	Mitochondrial DNA Haplogroups and Delirium During Sepsis. Critical Care Medicine, 2019, 47, 1065-1071.	0.4	14
3	Low-grade albuminuria in pulmonary arterial hypertension. Pulmonary Circulation, 2019, 9, 204589401882456.	0.8	11
4	Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA. Nucleic Acids Research, 2018, 46, 3458-3467.	6.5	32
5	Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation. NeuroToxicology, 2018, 67, 65-72.	1.4	18
6	Lower Concentrations of Circulating Medium and Long-Chain Acylcarnitines Characterize Insulin Resistance in Persons with HIV. AIDS Research and Human Retroviruses, 2018, 34, 536-543.	0.5	7
7	Pyridine Dinucleotides from Molecules to Man. Antioxidants and Redox Signaling, 2018, 28, 180-212.	2.5	24
8	Nicotine Adenine Dinucleotides: The Redox Currency of the Cell. Antioxidants and Redox Signaling, 2018, 28, 165-166.	2.5	6
9	Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin. Biochemical and Biophysical Research Communications, 2018, 495, 433-437.	1.0	41
10	Treatment of Acute Intoxication From Inhaled 1,2-Difluoroethane. Annals of Internal Medicine, 2018, 169, 820.	2.0	4
11	Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer's disease and a novel protective role for ascorbate. Free Radical Biology and Medicine, 2017, 112, 515-523.	1.3	53
12	Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulmonary Circulation, 2017, 7, 624-634.	0.8	20
13	Kidney dysfunction in patients with pulmonary arterial hypertension. Pulmonary Circulation, 2017, 7, 38-54.	0.8	47
14	Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension. Pulmonary Circulation, 2017, 7, 186-199.	0.8	57
15	Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circulation Research, 2017, 121, 564-574.	2.0	195
16	Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism. PLoS ONE, 2017, 12, e0190456.	1.1	20
17	Transbronchial Cryobiopsy Can Diagnose Constrictive Bronchiolitis in Veterans of Recent Conflicts in the Middle East. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 806-808.	2.5	24
18	Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 719-728.	2.5	75

Joshua Fessel

#	Article	IF	CITATIONS
19	Shared Gene Expression Patterns in Mesenchymal Progenitors Derived from Lung and Epidermis in Pulmonary Arterial Hypertension: Identifying Key Pathways in Pulmonary Vascular Disease. Pulmonary Circulation, 2016, 6, 483-497.	0.8	19
20	Fatty Acid Metabolic Defects and Right Ventricular Lipotoxicity in Human Pulmonary Arterial Hypertension. Circulation, 2016, 133, 1936-1944.	1.6	169
21	Estrogen Metabolite 16α-Hydroxyestrone Exacerbates Bone Morphogenetic Protein Receptor Type II–Associated Pulmonary Arterial Hypertension Through MicroRNA-29–Mediated Modulation of Cellular Metabolism. Circulation, 2016, 133, 82-97.	1.6	83
22	LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells. Oncogene, 2016, 35, 856-866.	2.6	47
23	Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. Journal of Clinical Investigation, 2016, 126, 3313-3335.	3.9	303
24	Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7. Aging, 2016, 8, 1759-1780.	1.4	21
25	Expression of Mutant Bone Morphogenetic Protein Receptor II Worsens Pulmonary Hypertension Secondary to Pulmonary Fibrosis. Pulmonary Circulation, 2015, 5, 681-690.	0.8	35
26	Redox Biology in Pulmonary Arterial Hypertension (2013 Grover Conference Series). Pulmonary Circulation, 2015, 5, 599-609.	0.8	22
27	Evidence for Right Ventricular Lipotoxicity in Heritable Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 325-334.	2.5	146
28	Rescuing the BMPR2 signaling axis in pulmonary arterial hypertension. Drug Discovery Today, 2014, 19, 1241-1245.	3.2	24
29	Hyperoxia Synergizes with Mutant Bone Morphogenic Protein Receptor 2 to Cause Metabolic Stress, Oxidant Injury, and Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 778-787.	1.4	38
30	Dysfunctional Resident Lung Mesenchymal Stem Cells Contribute to Pulmonary Microvascular Remodeling. Pulmonary Circulation, 2013, 3, 31-49.	0.8	67
31	Multi-organ Abnormalities and mTORC1 Activation in Zebrafish Model of Multiple Acyl-CoA Dehydrogenase Deficiency. PLoS Genetics, 2013, 9, e1003563.	1.5	46
32	Interaction between Bone Morphogenetic Protein Receptor Type 2 and Estrogenic Compounds in Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 564-577.	0.8	47
33	A potential role for insulin resistance in experimental pulmonary hypertension. European Respiratory Journal, 2013, 41, 861-871.	3.1	104
34	Author's Reply. Pulmonary Circulation, 2013, 3, 447-8.	0.8	0
35	Metabolomic Analysis of Bone Morphogenetic Protein Receptor Type 2ÂMutations in Human Pulmonary Endothelium Reveals Widespread Metabolic Reprogramming. Pulmonary Circulation, 2012, 2, 201-213.	0.8	121
36	A Processâ€Based Review of Mouse Models of Pulmonary Hypertension. Pulmonary Circulation, 2012, 2, 415-433.	0.8	23

Joshua Fessel

#	Article	IF	CITATIONS
37	Outcomes in Elderly Intensive Care Unit Patients, Pulmonary Hypertension in Sickle Cell Disease, and Total Liquid Ventilation for Therapeutic Hypothermia after Cardiac Arrest in Rabbits. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 453-454.	2.5	1
38	Connectivity Map Analysis of Nonsense-Mediated Decay–Positive <i>BMPR2</i> -Related Hereditary Pulmonary Arterial Hypertension Provides Insights into Disease Penetrance. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 20-27.	1.4	16
39	Chasing Pulmonary Hypertension: 1980–2012. Advances in Pulmonary Hypertension, 2012, 11, 121-123.	0.1	0
40	Microarray studies in pulmonary arterial hypertension. International Journal of Clinical Practice, 2011, 65, 19-28.	0.8	20
41	Oxidative Injury is a Common Consequence of BMPR2ÂMutations. Pulmonary Circulation, 2011, 1, 72-83.	0.8	51
42	The Genetics of Pulmonary Arterial Hypertension in the <i>Postâ€BMPR2</i> Era. Pulmonary Circulation, 2011, 1, 305-319.	0.8	52
43	Oxygen Therapy—Use and Abuse. Clinical Cardiology, 2010, 33, 52-52.	0.7	0
44	Acute Abdominal Pain: A Case Study of Multi-Service Collaboration in Palliation (738). Journal of Pain and Symptom Management, 2010, 39, 442-443.	0.6	0
45	Seizureâ€induced formation of isofurans: novel products of lipid peroxidation whose formation is positively modulated by oxygen tension. Journal of Neurochemistry, 2008, 104, 264-270.	2.1	37
46	Orthostatic hypertension: when pressor reflexes overcompensate. Nature Clinical Practice Nephrology, 2006, 2, 424-431.	2.0	100
47	Degree of heteroplasmy reflects oxidant damage in a large family with the mitochondrial DNA A8344G mutation. Free Radical Biology and Medicine, 2005, 38, 678-683.	1.3	16
48	Oxidative Mediated Lipid Peroxidation Recapitulates Proarrhythmic Effects on Cardiac Sodium Channels. Circulation Research, 2005, 97, 1262-1269.	2.0	117
49	Isofurans: Novel Products of Lipid Peroxidation that Define the Occurrence of Oxidant Injury in Settings of Elevated Oxygen Tension. Antioxidants and Redox Signaling, 2005, 7, 202-209.	2.5	49
50	The Biochemistry of the Isoprostane, Neuroprostane, and Isofuran Pathways of Lipid Peroxidation. Brain Pathology, 2005, 15, 143-148.	2.1	95
51	A nomenclature system for isofurans. Prostaglandins and Other Lipid Mediators, 2004, 73, 47-50.	1.0	26
52	Localization of isoketal adducts in vivo using a single-chain antibody. Free Radical Biology and Medicine, 2004, 36, 1163-1174.	1.3	53
53	Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chemistry and Physics of Lipids, 2004, 128, 117-124.	1.5	222
54	The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chemistry and Physics of Lipids, 2004, 128, 173-186.	1.5	105

#	Article	IF	CITATIONS
55	lsofurans, but not F ₂ â€isoprostanes, are increased in the substantia nigra of patients with Parkinson's disease and with dementia with Lewy body disease. Journal of Neurochemistry, 2003, 85, 645-650.	2.1	86
56	Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16713-16718.	3.3	206