
Renliang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7562556/publications.pdf Version: 2024-02-01

RENLIANC HUANC

#	Article	IF	CITATIONS
1	Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Applied Catalysis B: Environmental, 2019, 254, 452-462.	10.8	228
2	Facile in Situ Synthesis of Silver Nanoparticles on Procyanidin-Grafted Eggshell Membrane and Their Catalytic Properties. ACS Applied Materials & Interfaces, 2014, 6, 4638-4649.	4.0	175
3	Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology, 2010, 101, 4959-4964.	4.8	174
4	Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter, 2011, 7, 6222.	1.2	170
5	Rational Design of Chiral Nanostructures from Self-Assembly of a Ferrocene-Modified Dipeptide. Journal of the American Chemical Society, 2015, 137, 7869-7880.	6.6	170
6	Constructing Redox-Responsive Metal–Organic Framework Nanocarriers for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 16698-16706.	4.0	147
7	Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chemical Communications, 2010, 46, 1115-1117.	2.2	142
8	A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosensors and Bioelectronics, 2015, 74, 454-460.	5.3	133
9	Fractionating lignocellulose by formic acid: Characterization of major components. Biomass and Bioenergy, 2010, 34, 525-532.	2.9	126
10	Bioconversion of Lignocellulose into Bioethanol: Process Intensification and Mechanism Research. Bioenergy Research, 2011, 4, 225-245.	2.2	117
11	A facile strategy for enzyme immobilization with highly stable hierarchically porous metal–organic frameworks. Nanoscale, 2017, 9, 17561-17570.	2.8	117
12	Grafting Hyaluronic Acid onto Gold Surface to Achieve Low Protein Fouling in Surface Plasmon Resonance Biosensors. ACS Applied Materials & Interfaces, 2014, 6, 13034-13042.	4.0	116
13	Enhanced photocatalytic degradation of antibiotics in water over functionalized N,S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight irradiation. Chemical Engineering Journal, 2020, 382, 123016.	6.6	116
14	Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. Science of the Total Environment, 2021, 766, 144469.	3.9	114
15	A carbon dot-based "off–on―fluorescent probe for highly selective and sensitive detection of phytic acid. Biosensors and Bioelectronics, 2015, 70, 232-238.	5.3	107
16	Enhanced Enzymatic Hydrolysis of Lignocellulose by Optimizing Enzyme Complexes. Applied Biochemistry and Biotechnology, 2010, 160, 1407-1414.	1.4	106
17	Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 33407-33415.	4.0	103
18	Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide. ACS Applied Materials & Interfaces, 2015, 7, 22448-22457.	4.0	101

#	Article	IF	CITATIONS
19	Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. Journal of Materials Science, 2014, 49, 1639-1647.	1.7	100
20	Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomaterialia, 2016, 40, 100-118.	4.1	98
21	Reduction of Hexavalent Chromium Using Recyclable Pt/Pd Nanoparticles Immobilized on Procyanidin-Grafted Eggshell Membrane. Industrial & Engineering Chemistry Research, 2014, 53, 13635-13643.	1.8	95
22	Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major components. Food and Bioproducts Processing, 2015, 94, 322-330.	1.8	95
23	Solvent and surface controlled self-assembly of diphenylalanine peptide: from microtubes to nanofibers. Soft Matter, 2011, 7, 6418.	1.2	90
24	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie - International Edition, 2019, 58, 1308-1314.	7.2	81
25	Selective Synthesis of 2,5-Diformylfuran and 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Catalyzed by Magnetically Separable Catalysts. Energy & Fuels, 2017, 31, 533-541.	2.5	80
26	Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide. Chemical Engineering Journal, 2015, 280, 90-98.	6.6	78
27	Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles. Sensors, 2015, 15, 12205-12217.	2.1	77
28	Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting. ACS Applied Materials & Interfaces, 2016, 8, 14133-14141.	4.0	76
29	Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydrate Polymers, 2021, 272, 118471.	5.1	76
30	Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural. Chemical Engineering Journal, 2016, 296, 209-216.	6.6	75
31	Synthesis of silver nanoparticles within cross-linked lysozyme crystals as recyclable catalysts for 4-nitrophenol reduction. Catalysis Science and Technology, 2013, 3, 1910.	2.1	71
32	Self-Assembly of Amphiphilic Janus Particles into Monolayer Capsules for Enhanced Enzyme Catalysis in Organic Media. ACS Applied Materials & Interfaces, 2015, 7, 465-473.	4.0	71
33	Electrostatic and Aromatic Interaction-Directed Supramolecular Self-Assembly of a Designed Fmoc-Tripeptide into Helical Nanoribbons. Langmuir, 2015, 31, 2885-2894.	1.6	70
34	Interfacial Polymerization of Dopamine in a Pickering Emulsion: Synthesis of Cross-Linkable Colloidosomes and Enzyme Immobilization at Oil/Water Interfaces. ACS Applied Materials & Interfaces, 2015, 7, 14954-14964.	4.0	69
35	Selfâ€Assembly of Peptideâ€Based Colloids Containing Lipophilic Nanocrystals. Small, 2008, 4, 1687-1693.	5.2	67
36	Copper nanocluster-based fluorescent sensors for sensitive and selective detection of kojic acid in food stuff. Sensors and Actuators B: Chemical, 2014, 195, 359-364.	4.0	67

#	Article	IF	CITATIONS
37	Conjugation of Hyaluronic Acid onto Surfaces via the Interfacial Polymerization of Dopamine to Prevent Protein Adsorption. Langmuir, 2015, 31, 12061-12070.	1.6	66
38	Promising Techniques for Depolymerization of Lignin into Valueâ€added Chemicals. ChemCatChem, 2019, 11, 639-654.	1.8	65
39	Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles. Nanotechnology, 2011, 22, 245609.	1.3	64
40	Enhanced Ethanol Production from Pomelo Peel Waste by Integrated Hydrothermal Treatment, Multienzyme Formulation, and Fed-Batch Operation. Journal of Agricultural and Food Chemistry, 2014, 62, 4643-4651.	2.4	64
41	Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Research Letters, 2014, 9, 653.	3.1	62
42	Catalytic Membrane Reactor Immobilized with Alloy Nanoparticle-Loaded Protein Fibrils for Continuous Reduction of 4-Nitrophenol. Environmental Science & Technology, 2016, 50, 11263-11273.	4.6	61
43	Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods. Biochemical and Biophysical Research Communications, 2010, 391, 862-867.	1.0	60
44	Preparation of amorphous MOF based biomimetic nanozyme with high laccase- and catecholase-like activity for the degradation and detection of phenolic compounds. Chemical Engineering Journal, 2022, 434, 134677.	6.6	59
45	Superhydrophobic, elastic and anisotropic cellulose nanofiber aerogels for highly effective oil/water separation. Separation and Purification Technology, 2022, 295, 121266.	3.9	59
46	A supramolecular approach to construct a hydrolase mimic with photo-switchable catalytic activity. Journal of Materials Chemistry B, 2018, 6, 2444-2449.	2.9	58
47	Threeâ€dimensionally printed bioinspired superhydrophobic PLA membrane for oilâ€water separation. AICHE Journal, 2018, 64, 3700-3708.	1.8	57
48	Synthesis of superhydrophobic and high stable Zr-MOFs for oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125102.	2.3	57
49	Amphiphilic hydrogels for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 2899-2910.	2.9	54
50	Polydopamine-Assisted Surface Coating of MIL-53 and Dodecanethiol on a Melamine Sponge for Oil–Water Separation. Langmuir, 2020, 36, 1212-1220.	1.6	54
51	Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants. Catalysis Science and Technology, 2021, 11, 3402-3410.	2.1	54
52	Construction of biomimetic nanozyme with high laccase- and catecholase-like activity for oxidation and detection of phenolic compounds. Journal of Hazardous Materials, 2022, 429, 128404.	6.5	54
53	Deciphering the binding patterns and conformation changes upon the bovine serum albumin–rosmarinic acid complex. Food and Function, 2015, 6, 2712-2726.	2.1	53
54	Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides. ACS Nano, 2018, 12, 12305-12314.	7.3	53

#	Article	IF	CITATIONS
55	Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity. Catalysis Today, 2020, 355, 397-407.	2.2	53
56	3D Flower-like Micro/Nano Ce–Mo Composite Oxides as Effective Bifunctional Catalysts for One-Pot Conversion of Fructose to 2,5-Diformylfuran. ACS Sustainable Chemistry and Engineering, 2017, 5, 4179-4187.	3.2	52
57	Highly Efficient Catalysis of Azo Dyes Using Recyclable Silver Nanoparticles Immobilized on Tannic Acid-Grafted Eggshell Membrane. Nanoscale Research Letters, 2016, 11, 440.	3.1	50
58	Bioinspired Peptide-Coated Superhydrophilic Poly(vinylidene fluoride) Membrane for Oil/Water Emulsion Separation. Langmuir, 2018, 34, 6621-6627.	1.6	50
59	Dopamine-assisted deposition and zwitteration of hyaluronic acid for the nanoscale fabrication of low-fouling surfaces. Journal of Materials Chemistry B, 2016, 4, 4084-4091.	2.9	48
60	Effect of Formic Acid on Conversion of Fructose to 5-Hydroxymethylfurfural in Aqueous/Butanol Media. Bioenergy Research, 2012, 5, 380-386.	2.2	46
61	Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts. Nanotechnology, 2013, 24, 245601.	1.3	46
62	Kinetically controlled self-assembly of redox-active ferrocene–diphenylalanine: from nanospheres to nanofibers. Nanotechnology, 2013, 24, 465603.	1.3	46
63	Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol. Journal of Membrane Science, 2019, 582, 30-36.	4.1	45
64	Advances in carrier-bound and carrier-free immobilized nanobiocatalysts. Chemical Engineering Science, 2015, 135, 21-32.	1.9	42
65	Oriented Enzyme Immobilization at the Oil/Water Interface Enhances Catalytic Activity and Recyclability in a Pickering Emulsion. Langmuir, 2017, 33, 12317-12325.	1.6	42
66	Controlled adsorption of cellulase onto pretreated corncob by pH adjustment. Cellulose, 2012, 19, 371-380.	2.4	41
67	A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery. Journal of Materials Science, 2012, 47, 2045-2055.	1.7	41
68	Rationally Designed Peptidyl Virusâ€Like Particles Enable Targeted Delivery of Genetic Cargo. Angewandte Chemie - International Edition, 2018, 57, 14032-14036.	7.2	41
69	Self-Assembly of Peptide Hierarchical Helical Arrays with Sequence-Encoded Circularly Polarized Luminescence. Nano Letters, 2021, 21, 6406-6415.	4.5	41
70	Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Progress in Polymer Science, 2021, 123, 101469.	11.8	39
71	Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnology Progress, 2010, 26, 384-392.	1.3	37
72	Reconfigurable Chiral Selfâ€Assembly of Peptides through Control of Terminal Charges. Small, 2017, 13, 1700999.	5.2	37

#	Article	IF	CITATIONS
73	Columnar Liquid Crystals Self-Assembled by Minimalistic Peptides for Chiral Sensing and Synthesis of Ordered Mesoporous Silica. Chemistry of Materials, 2018, 30, 7902-7911.	3.2	37
74	Highly selective reductive catalytic fractionation at atmospheric pressure without hydrogen. Green Chemistry, 2021, 23, 1648-1657.	4.6	37
75	Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale Research Letters, 2014, 9, 404.	3.1	36
76	One-pot synthesis of mercapto functionalized Zr-MOFs for the enhanced removal of Hg ²⁺ ions from water. Chemical Communications, 2019, 55, 6775-6778.	2.2	36
77	Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery. Nanoscale Research Letters, 2016, 11, 184.	3.1	35
78	Molecularly Imprinted Core-Shell CdSe@SiO2/CDs as a Ratiometric Fluorescent Probe for 4-Nitrophenol Sensing. Nanoscale Research Letters, 2018, 13, 27.	3.1	35
79	Construction of luffa sponge-based magnetic carbon nanocarriers for laccase immobilization and its application in the removal of bisphenol A. Bioresource Technology, 2020, 305, 123085.	4.8	35
80	Integrating interfacial self-assembly and electrostatic complexation at an aqueous interface for capsule synthesis and enzyme immobilization. Journal of Materials Chemistry A, 2014, 2, 1672-1676.	5.2	34
81	Synergy between Zwitterionic Polymers and Hyaluronic Acid Enhances Antifouling Performance. Langmuir, 2019, 35, 15535-15542.	1.6	34
82	Controllable synthesis of a sponge-like Z-scheme N,S-CQDs/Bi2MoO6@TiO2 film with enhanced photocatalytic and antimicrobial activity under visible/NIR light irradiation. Journal of Hazardous Materials, 2022, 429, 128310.	6.5	34
83	Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating. Journal of Materials Chemistry C, 2016, 4, 7554-7562.	2.7	33
84	Interactions between Lubricin and Hyaluronic Acid Synergistically Enhance Antiadhesive Properties. ACS Applied Materials & Interfaces, 2019, 11, 18090-18102.	4.0	33
85	Green fluorescent protein inspired fluorophores. Advances in Colloid and Interface Science, 2020, 285, 102286.	7.0	33
86	Gold Nanoparticle-Aptamer-Based LSPR Sensing of Ochratoxin A at a Widened Detection Range by Double Calibration Curve Method. Frontiers in Chemistry, 2018, 6, 94.	1.8	32
87	Structures and Antifouling Properties of Self-Assembled Zwitterionic Peptide Monolayers: Effects of Peptide Charge Distributions and Divalent Cations. Biomacromolecules, 2020, 21, 2087-2095.	2.6	32
88	Bioinspired Phosphatase-like Mimic Built from the Self-Assembly of De Novo Designed Helical Short Peptides. ACS Catalysis, 2021, 11, 5839-5849.	5.5	32
89	Green Synthesis of a Gold Nanoparticle–Nanocluster Composite Nanostructures Using Trypsin as Linking and Reducing Agents. ACS Sustainable Chemistry and Engineering, 2013, 1, 1398-1404.	3.2	31
90	Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass. Applied Microbiology and Biotechnology, 2014, 98, 5765-5774.	1.7	31

#	Article	IF	CITATIONS
91	Capillary Forceâ€Driven, Hierarchical Coâ€Assembly of Dandelionâ€Like Peptide Microstructures. Small, 2015, 11, 2893-2902.	5.2	31
92	Cascade catalysis via dehydration and oxidation: one-pot synthesis of 2,5-diformylfuran from fructose using acid and V ₂ O ₅ /ceramic catalysts. RSC Advances, 2017, 7, 7560-7566.	1.7	31
93	Tunable Design of Structural Colors Produced by Pseudoâ€1D Photonic Crystals of Graphene Oxide. Small, 2016, 12, 3433-3443.	5.2	30
94	Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance. Biosensors and Bioelectronics, 2017, 92, 266-272.	5.3	30
95	Encapsulation of enzyme via oneâ€step templateâ€free formation of stable organic–inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability. Biotechnology and Bioengineering, 2015, 112, 1092-1101.	1.7	28
96	Lipase immobilized on novel ceramic supporter with Ni activation for efficient cinnamyl acetate synthesis. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 32-38.	1.8	27
97	Greener production of cellulose nanocrystals: An optimised design and life cycle assessment. Journal of Cleaner Production, 2022, 345, 131073.	4.6	26
98	Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin. PLoS ONE, 2015, 10, e0118274.	1.1	25
99	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie, 2019, 131, 1322-1328.	1.6	25
100	Construction of a Mercapto-Functionalized Zr-MOF/Melamine Sponge Composite for the Efficient Removal of Oils and Heavy Metal Ions from Water. Industrial & Engineering Chemistry Research, 2020, 59, 13220-13227.	1.8	25
101	Bioorganometallic ferrocene-tripeptide nanoemulsions. Nanoscale, 2017, 9, 15323-15331.	2.8	24
102	Chelate immobilization of amylase on metal ceramic powder: Preparation, characterization and application. Biochemical Engineering Journal, 2013, 77, 190-197.	1.8	23
103	Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Research Letters, 2015, 10, 213.	3.1	23
104	Self-Assembled Microporous Peptide-Polysaccharide Aerogels for Oil–Water Separation. Langmuir, 2018, 34, 10732-10738.	1.6	23
105	Molecularly imprinted peptide-based enzyme mimics with enhanced activity and specificity. Soft Matter, 2020, 16, 7033-7039.	1.2	23
106	Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. Bioenergy Research, 2011, 4, 134-140.	2.2	22
107	Enzymatic hydrolysis of lignocellulose: SEC-MALLS analysis and reaction mechanism. RSC Advances, 2013, 3, 1871-1877.	1.7	22
108	Integrating chromium-based ceramic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Renewable Energy, 2018, 125, 327-333.	4.3	22

#	Article	IF	CITATIONS
109	Three-Dimensionally Printed Bioinspired Superhydrophobic Packings for Oil-in-Water Emulsion Separation. Langmuir, 2019, 35, 12799-12806.	1.6	21
110	Construction and stabilization of a peptide-based peroxidase mimic for the colorimetric detection of uric acid and sarcosine. Chemical Engineering Journal, 2021, 416, 129149.	6.6	21
111	Exploration of Intrinsic Lipase-Like Activity of Zirconium-Based Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2018, 2018, 4579-4585.	1.0	20
112	Tannic acid-assisted fabrication of Fe-Pd nanoparticles for stable rapid dechlorination of two organochlorides. Chemical Engineering Journal, 2018, 352, 716-721.	6.6	20
113	Fluorescent silicon nanoparticles inhibit the amyloid fibrillation of insulin. Journal of Materials Chemistry B, 2019, 7, 1397-1403.	2.9	20
114	Role of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-pH-sensitive hydrogel. Journal of Colloid and Interface Science, 2020, 577, 388-396.	5.0	20
115	Synergistic effect of polystyrene nanoplastics and contaminants on the promotion of insulin fibrillation. Ecotoxicology and Environmental Safety, 2021, 214, 112115.	2.9	20
116	Jet flow directed supramolecular self-assembly at aqueous liquid–liquid interface. RSC Advances, 2014, 4, 15340.	1.7	19
117	Bioinspired pH-Sensitive Fluorescent Peptidyl Nanoparticles for Cell Imaging. ACS Applied Materials & Interfaces, 2020, 12, 4212-4220.	4.0	19
118	Pancreatic hydrolysis of bovine casein: Changes in the aggregate size and molecular weight distribution. Food Chemistry, 2008, 107, 151-157.	4.2	18
119	Ethanol Production from High-Solid SSCF of Alkaline-Pretreated Corncob Using Recombinant Zymomonas mobilis CP4. Bioenergy Research, 2013, 6, 292-299.	2.2	18
120	Changes in the supramolecular structures of cellulose after hydrolysis studied by terahertz spectroscopy and other methods. RSC Advances, 2014, 4, 57945-57952.	1.7	18
121	Long-range ordered graphite oxide liquid crystals. Chemical Communications, 2014, 50, 7776-7779.	2.2	18
122	"One-pot―conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid. Catalysis Today, 2018, 302, 94-99.	2.2	18
123	Real-time adsorption and action of expansin on cellulose. Biotechnology for Biofuels, 2018, 11, 317.	6.2	18
124	Synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural in ethyl acetate using 4-acetamido-TEMPO as a recyclable catalyst. Catalysis Today, 2019, 319, 121-127.	2.2	18
125	Three-dimensional printing of black phosphorous/polypyrrole electrode for energy storage using thermoresponsive ink. Chemical Communications, 2020, 56, 3115-3118.	2.2	18
126	Production enhancement of 5â€hydroxymethyl furfural from fructose via mechanical stirring control and highâ€fructose solution addition. Journal of Chemical Technology and Biotechnology, 2014, 89, 56-64.	1.6	17

#	Article	IF	CITATIONS
127	Enzyme–substrate interactions promote the self-assembly of amino acid derivatives into supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 844-851.	2.9	17
128	Peptideâ€Templated Synthesis of TiO ₂ Nanofibers with Tunable Photocatalytic Activity. Chemistry - A European Journal, 2018, 24, 18123-18129.	1.7	17
129	Photoâ€Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferroceneâ€Tyrosine. Small, 2018, 14, e1800772.	5.2	17
130	Disulfide crosslinking and helical coiling of peptide micelles facilitate the formation of a printable hydrogel. Journal of Materials Chemistry B, 2019, 7, 2981-2988.	2.9	17
131	Ferrocene-modified peptides as inhibitors against insulin amyloid aggregation based on molecular simulation. Journal of Materials Chemistry B, 2020, 8, 3076-3086.	2.9	17
132	Effect of Hydrophobicity and Charge Separation on the Antifouling Properties of Surface-Tethered Zwitterionic Peptides. Langmuir, 2021, 37, 8455-8462.	1.6	17
133	Enhanced enzymatic hydrolysis of lignocellulose by integrated decrystallization and fed-batch operation. RSC Advances, 2014, 4, 44659-44665.	1.7	16
134	Magnetic–fluorescent nanocomposites as reusable fluorescence probes for sensitive detection of hydrogen peroxide and glucose. Analytical Methods, 2014, 6, 6352-6357.	1.3	16
135	Superior Catalytic Performance of Gold Nanoparticles Within Small Cross-Linked Lysozyme Crystals. Langmuir, 2016, 32, 10895-10904.	1.6	16
136	Enhanced enzymatic hydrolysis of corncob by ultrasound-assisted soaking in aqueous ammonia pretreatment. 3 Biotech, 2018, 8, 166.	1.1	16
137	Real-Time Adsorption of Exo- and Endoglucanases on Cellulose: Effect of pH, Temperature, and Inhibitors. Langmuir, 2018, 34, 13514-13522.	1.6	16
138	Self-assembly of multifunctional hydrogels with polyoxometalates helical arrays using nematic peptide liquid crystal template. Journal of Colloid and Interface Science, 2020, 578, 218-228.	5.0	16
139	Zwitterionic Peptide Enhances Protein-Resistant Performance of Hyaluronic Acid-Modified Surfaces. Langmuir, 2020, 36, 1923-1929.	1.6	16
140	Co-assembly of curcumin and a cystine bridged peptide to construct tumor-responsive nano-micelles for efficient chemotherapy. Journal of Materials Chemistry B, 2020, 8, 1944-1951.	2.9	16
141	Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity. Journal of Colloid and Interface Science, 2022, 622, 135-146.	5.0	16
142	Constructing peptide-based artificial hydrolases with customized selectivity. Journal of Materials Chemistry B, 2019, 7, 3804-3810.	2.9	15
143	Continuous rapid dechlorination of p-chlorophenol by Fe-Pd nanoparticles promoted by procyanidin. Chemical Engineering Science, 2019, 201, 121-131.	1.9	15
144	Photo- and Aromatic Stacking-Induced Green Emissive Peptidyl Nanoparticles for Cell Imaging and Monitoring of Nucleic Acid Delivery. ACS Applied Materials & Interfaces, 2019, 11, 15401-15410.	4.0	15

#	Article	IF	CITATIONS
145	A tumor-sensitive biological metal–organic complex for drug delivery and cancer therapy. Journal of Materials Chemistry B, 2020, 8, 7189-7196.	2.9	15
146	Self-Templated, Enantioselective Assembly of an Amyloid-like Dipeptide into Multifunctional Hierarchical Helical Arrays. ACS Nano, 2021, 15, 9827-9840.	7.3	15
147	One-pot synthesis of fluorine functionalized Zr-MOFs and their in situ growth on sponge for oil absorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126322.	2.3	15
148	High chloroform removal using tannic acid to promote the activation of persulfate with Fe/Ni nanoparticles. Environmental Chemistry Letters, 2021, 19, 4015-4020.	8.3	15
149	Lubricin-Inspired Loop Zwitterionic Peptide for Fabrication of Superior Antifouling Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 41978-41986.	4.0	15
150	One-pot production of phenazine from lignin-derived catechol. Green Chemistry, 2022, 24, 1224-1230.	4.6	15
151	Adsorption–Desorption Behavior of Black Phosphorus Quantum Dots on Mucin Surface. Langmuir, 2018, 34, 8508-8515.	1.6	14
152	Recycling Strategy and Repression Elimination for Lignocellulosic-Based Farnesene Production with an Engineered <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9858-9867.	2.4	14
153	Bioinspired Fluorescent Peptidyl Nanoparticles with Rainbow Colors. ACS Applied Materials & Interfaces, 2020, 12, 31830-31841.	4.0	14
154	Synergy between endo/exo-glucanases and expansin enhances enzyme adsorption and cellulose conversion. Carbohydrate Polymers, 2021, 253, 117287.	5.1	14
155	Alizarin and Purpurin from <i>Rubia tinctorum</i> L. Suppress Insulin Fibrillation and Reduce the Amyloid-Induced Cytotoxicity. ACS Chemical Neuroscience, 2021, 12, 2182-2193.	1.7	14
156	Chirality-Dependent Copper–Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance. ACS Nano, 2022, 16, 6866-6877.	7.3	14
157	Structural Insight into Stabilization of Pickering Emulsions with Fe ₃ O ₄ @SiO ₂ Nanoparticles for Enzyme Catalysis in Organic Media. Particle and Particle Systems Characterization, 2017, 34, 1700117.	1.2	13
158	Tandem Biocatalysis by CotA-TJ102@UIO-66-NH2 and Novozym 435 for Highly Selective Transformation of HMF into FDCA. Transactions of Tianjin University, 2019, 25, 488-496.	3.3	13
159	Nontoxic Black Phosphorus Quantum Dots Inhibit Insulin Amyloid Fibrillation at an Ultralow Concentration. IScience, 2020, 23, 101044.	1.9	13
160	Co-optimization of sugar yield and input energy by the stepwise reduction of agitation rate during lignocellulose hydrolysis. Food and Bioproducts Processing, 2015, 95, 1-6.	1.8	12
161	Tannic acid enhances the removal of chloroform from water using NaOH-activated persulfate. Environmental Chemistry Letters, 2020, 18, 1441-1446.	8.3	12
162	Control of peptide hydrogel formation and stability via heating treatment. Journal of Colloid and Interface Science, 2021, 583, 234-242.	5.0	12

#	Article	IF	CITATIONS
163	Counterionâ€Directed, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces. Advanced Materials Interfaces, 2016, 3, 1500327.	1.9	11
164	Enhanced cellulase recovery without βâ€glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Biotechnology and Bioengineering, 2017, 114, 543-551.	1.7	11
165	Ferrocene-Modified Metal–Organic Frameworks as a Peroxidase-Mimicking Catalyst. Catalysis Letters, 2021, 151, 478-486.	1.4	11
166	Enzymatic Hydrolysis of Cellulose with Different Crystallinities Studied by Means of SEC-MALLS. Chinese Journal of Chemical Engineering, 2011, 19, 773-778.	1.7	10
167	Adsorptive removal of Ni(<scp>ii</scp>) ions from aqueous solution and the synthesis of a Ni-doped ceramic: an efficient enzyme carrier exhibiting enhanced activity of immobilized lipase. RSC Advances, 2016, 6, 64581-64588.	1.7	10
168	Co-assembly of Fmoc-tripeptide and gold nanoparticles as a facile approach to immobilize nanocatalysts. RSC Advances, 2017, 7, 15736-15741.	1.7	10
169	Selfâ€Assembly of Ferrocene Peptides: A Nonheme Strategy to Construct a Peroxidase Mimic. Advanced Materials Interfaces, 2019, 6, 1901082.	1.9	10
170	<i>In situ</i> fabrication of multifunctional gold–amino acid superstructures based on self-assembly. Chemical Communications, 2019, 55, 3967-3970.	2.2	10
171	Efficient removal of chloroform in groundwater by polyethylene glycol-stabilized Fe/Ni nanoparticles. Environmental Chemistry Letters, 2021, 19, 3511-3515.	8.3	10
172	PREPARATION AND ACTIVITY OF BUBBLING-IMMOBILIZED CELLOBIASE WITHIN CHITOSAN-ALGINATE COMPOSITE. Preparative Biochemistry and Biotechnology, 2009, 40, 57-64.	1.0	9
173	Self-assembled oligomeric procyanidin–insulin hybrid nanoparticles: a novel strategy for controllable insulin delivery. Biomaterials Science, 2013, 1, 834.	2.6	9
174	Chemical catalysis triggered self-assembly for the bottom-up fabrication of peptide nanofibers and hydrogels. Materials Letters, 2014, 128, 216-219.	1.3	9
175	Alginate-casein microspheres as bioactive vehicles for nutrients. Transactions of Tianjin University, 2015, 21, 383-391.	3.3	9
176	Reducing β-glucosidase supplementation during cellulase recovery using engineered strain for successive lignocellulose bioconversion. Bioresource Technology, 2015, 187, 362-368.	4.8	9
177	Interaction of particles with mucosae and cell membranes. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110657.	2.5	9
178	Fabrication of nanohybrids assisted by protein-based materials for catalytic applications. Catalysis Science and Technology, 2020, 10, 3515-3531.	2.1	9
179	Interactions of Fly Ash Particles with Mucin and Serum Albumin. Langmuir, 2018, 34, 12251-12258.	1.6	8
180	Real-Time QCM-D Monitoring of Deposition of Gold Nanorods on a Supported Lipid Bilayer as a Model Cell Membrane. ACS Omega, 2019, 4, 6059-6067.	1.6	8

#	Article	IF	CITATIONS
181	<i>In situ</i> growth of Au–Ag bimetallic nanorings on optical fibers for enhanced plasmonic sensing. Journal of Materials Chemistry C, 2020, 8, 7552-7560.	2.7	8
182	Effect of Sugars on the Real-Time Adsorption of Expansin on Cellulose. Biomacromolecules, 2020, 21, 1776-1784.	2.6	8
183	Real-Time QCM-D Monitoring of the Adsorption–Desorption of Expansin on Lignin. Langmuir, 2020, 36, 4503-4510.	1.6	8
184	The Optimization of Fractionating Lignocellulose by Formic Acid Using Response Surface Methodology. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 32, 1282-1292.	1.2	7
185	Cellulase Recycling after High-Solids Simultaneous Saccharification and Fermentation of Combined Pretreated Corncob. Frontiers in Energy Research, 2014, 2, .	1.2	7
186	A gas-phase amplified quartz crystal microbalance immunosensor based on catalase modified immunoparticles. Analyst, The, 2015, 140, 1174-1181.	1.7	7
187	A light-responsive multienzyme complex combining cascade enzymes within a peptide-based matrix. RSC Advances, 2018, 8, 6047-6052.	1.7	7
188	Design of Silica Nanostructures with Tunable Architectures Templated by Ferrocene Peptides. ChemistrySelect, 2018, 3, 4939-4943.	0.7	7
189	Poly (Î ³ -Glutamic Acid) Promotes Enhanced Dechlorination of p-Chlorophenol by Fe-Pd Nanoparticles. Nanoscale Research Letters, 2018, 13, 219.	3.1	7
190	Self-Assembly of Peptide Chiral Nanostructures with Sequence-Encoded Enantioseparation Capability. Langmuir, 2020, 36, 10361-10370.	1.6	7
191	Enhanced enzymatic hydrolysis of cellulose by endoglucanase via expansin pretreatment and the addition of zinc ions. Bioresource Technology, 2021, 333, 125139.	4.8	7
192	Rationally Designed Peptidyl Virus‣ike Particles Enable Targeted Delivery of Genetic Cargo. Angewandte Chemie, 2018, 130, 14228-14232.	1.6	6
193	Sequential sandwich immunoassay for simultaneous detection in trace samples using single-channel surface plasmon resonance. Analyst, The, 2019, 144, 5700-5705.	1.7	6
194	Construction of Supramolecular Nanostructures with High Catalytic Activity by Photoinduced Hierarchical Coâ€Assembly. Chemistry - A European Journal, 2019, 25, 7896-7902.	1.7	6
195	Real-Time Thickness Measurement of Marine Oil Spill by Fiber-Optic Surface Plasmon Resonance Sensors. Frontiers in Marine Science, 2022, 8, .	1.2	6
196	Flame-resistant bifunctional MOF-based sponges for effective separation of oil/water mixtures and enzyme-like degradation of organic pollutants. Chemical Engineering Research and Design, 2022, 163, 636-644.	2.7	6
197	Capillary Flowâ€Driven, Hierarchical Chiral Selfâ€Assembly of Peptide Nanohelix Arrays. Advanced Materials Interfaces, 2017, 4, 1700514.	1.9	5
198	Polyamine-induced, chiral expression from liquid crystalline peptide nanofilaments to long-range ordered nanohelices. Soft Matter, 2019, 15, 4818-4826.	1.2	5

#	Article	IF	CITATIONS
199	Self-Assembly of Ferrocenyl Phenylalanine into Nanohelical Arrays via Kinetic Control. ACS Applied Bio Materials, 2021, 4, 4744-4752.	2.3	5
200	Nano-engineered natural sponge as a recyclable and deformable reactor for ultrafast conversion of pollutants from water. Chemical Engineering Science, 2022, 247, 117049.	1.9	5
201	Rational Design of Chiral Nanohelices from Self-Assembly of Meso-tetrakis (4-Carboxyphenyl) Porphyrin-Amino Acid Conjugates. Langmuir, 2021, 37, 13067-13074.	1.6	5
202	Selfâ€Assembly of Ferroceneâ€Phenylalanine@Graphene Oxide Hybrid Hydrogels for Dopamine Detection. ChemPlusChem, 2020, 85, 2341-2348.	1.3	4
203	Heat Soaking Pretreatment for Greener Production of Phosphorylated Cellulose Nanofibrils with Higher Charge Density. ACS Sustainable Chemistry and Engineering, 2022, 10, 8876-8884.	3.2	4
204	Oscillating Cellulase Adsorption and Enhanced Lignocellulose Hydrolysis upon Ultrasound Treatment. Transactions of Tianjin University, 2017, 23, 11-19.	3.3	3
205	Frontispiz: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie, 2019, 131, .	1.6	3
206	Thermally Induced Structural Transition of Peptide Nanofibers into Nanoparticles with Enhanced Fluorescence Properties. ChemPlusChem, 2020, 85, 1523-1528.	1.3	3
207	Self-Assembled Bio-Organometallic Nanocatalysts for Highly Enantioselective Direct Aldol Reactions. Langmuir, 2020, 36, 13735-13742.	1.6	3
208	Topologyâ€Induced Chiral Amplification and Inversion in Selfâ€Assembling Dipeptide Films. Advanced Materials Interfaces, 0, , 2102089.	1.9	3
209	Polydopamine-assisted fabrication of fiber-optic localized surface plasmon resonance sensor based on gold nanoparticles. Transactions of Tianjin University, 2015, 21, 412-419.	3.3	2
210	Engineering peptide-based biomimetic enzymes for enhanced catalysis. RSC Advances, 2016, 6, 40828-40834.	1.7	2
211	Response to "Comment on †Tunable Design of Structural Colors Produced by Pseudoâ€1D Photonic Crystals of Graphene Oxide' and Thinâ€Film Interference from Dried Graphene Oxide Film― Small, 2017, 13, 1700102.	5.2	2
212	Sensing Interfaces: Antifouling Materials for Sensors. , 2023, , 619-635.		2
213	Divalent cations accelerate aggregation of Black phosphorus nanodots. Journal of Molecular Liquids, 2021, 341, 117331.	2.3	2
214	Mineralization and Selfâ€assembly of Gold Nanoparticles using Sulfur Amino Acid Modified Hierarchically Porous Metalâ€Organic Frameworks. ChemistrySelect, 2021, 6, 712-716.	0.7	2
215	Photonic Crystals: Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide (Small 25/2016). Small, 2016, 12, 3432-3432.	5.2	1
216	Peptide Biomaterials: Photo-Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferrocene-Tyrosine (Small 25/2018). Small, 2018, 14, 1870118.	5.2	1

#	Article	IF	CITATIONS
217	Protamineâ€induced condensation of peptide nanofilaments into twisted bundles with controlled helical geometry. Journal of Peptide Science, 2019, 25, e3176.	0.8	1
218	Interactions of Transition Metal Dichalcogenide Nanosheets With Mucin: Quartz Crystal Microbalance With Dissipation, Surface Plasmon Resonance, and Spectroscopic Probing. Frontiers in Chemistry, 2019, 7, 166.	1.8	1
219	Assembled peptides for biomimetic catalysis. , 2020, , 383-413.		1
220	Self-assembly of Fibonacci number spirals in amyloid-like nanofibril films. Science China Materials, 2022, 65, 3150-3156.	3.5	1
221	Peptide Microstructures: Capillary Forceâ€Driven, Hierarchical Coâ€Assembly of Dandelionâ€Like Peptide Microstructures (Small 24/2015). Small, 2015, 11, 2830-2830.	5.2	0
222	Counterionâ€Directed Assembly: Counterionâ€Directed, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces (Adv. Mater. Interfaces 5/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
223	Self-assembled chiral nanoribbons studied by terahertz time-domain spectroscopy and other biological methods. Chemical Physics Letters, 2019, 717, 130-135.	1.2	0
224	Frontispiece: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0