
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7562250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ecology of Arsenic. Science, 2003, 300, 939-944.	6.0	1,336
2	Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 1987, 330, 252-254.	13.7	900
3	Arsenic and Selenium in Microbial Metabolism. Annual Review of Microbiology, 2006, 60, 107-130.	2.9	573
4	Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 1999, 23, 615-627.	3.9	493
5	Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 2005, 13, 45-49.	3.5	470
6	A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus. Science, 2011, 332, 1163-1166.	6.0	422
7	Bacillus arsenicoselenatis , sp. nov., and Bacillus selenitireducens , sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Archives of Microbiology, 1998, 171, 19-30.	1.0	416
8	Nitrate and periplasmic nitrate reductases. Chemical Society Reviews, 2014, 43, 676-706.	18.7	260
9	Biotransformation of 3-Nitro-4-hydroxybenzene Arsonic Acid (Roxarsone) and Release of Inorganic Arsenic byClostridiumSpecies. Environmental Science & Technology, 2007, 41, 818-823.	4.6	223
10	Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature, 1986, 321, 849-851.	13.7	219
11	The Complete Genome Sequence and Analysis of the Epsilonproteobacterium Arcobacter butzleri. PLoS ONE, 2007, 2, e1358.	1.1	203
12	The respiratory arsenate reductase fromBacillus selenitireducensstrain MLS10. FEMS Microbiology Letters, 2003, 226, 107-112.	0.7	185
13	Note: Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε-Proteobacteria. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1177-1180.	0.8	183
14	The microbial arsenic cycle in Mono Lake, California. FEMS Microbiology Ecology, 2004, 48, 15-27.	1.3	166
15	A Microbial Arsenic Cycle in a Salt-Saturated, Extreme Environment. Science, 2005, 308, 1305-1308.	6.0	158
16	Dissimilatory Arsenate Reduction with Sulfide as Electron Donor: Experiments with Mono Lake Water and Isolation of Strain MLMS-1, a Chemoautotrophic Arsenate Respirer. Applied and Environmental Microbiology, 2004, 70, 2741-2747.	1.4	155
17	ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environmental Microbiology, 2012, 14, 1635-1645.	1.8	134
18	Arsenic in the Evolution of Earth and Extraterrestrial Ecosystems. Geomicrobiology Journal, 2009, 26, 522-536.	1.0	123

#	Article	IF	CITATIONS
19	Simultaneous Reduction of Nitrate and Selenate by Cell Suspensions of Selenium-Respiring Bacteria. Applied and Environmental Microbiology, 1999, 65, 4385-4392.	1.4	121
20	Respiratory arsenate reductase as a bidirectional enzyme. Biochemical and Biophysical Research Communications, 2009, 382, 298-302.	1.0	117
21	Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Archives of Microbiology, 2001, 175, 208-219.	1.0	110
22	The microbial community in the layered sediments at Laguna Figueroa, Baja California, Mexico: Does it have Precambrian analogues?. Precambrian Research, 1980, 11, 93-123.	1.2	99
23	Microbial Mineral Weathering for Nutrient Acquisition Releases Arsenic. Applied and Environmental Microbiology, 2009, 75, 2558-2565.	1.4	95
24	<i>Transformation of Inorganic and Organic Arsenic by</i> <scp>Alkaliphilus oremlandii</scp> <i>sp. nov. Strain OhILAs</i> . Annals of the New York Academy of Sciences, 2008, 1125, 230-241.	1.8	90
25	Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicology and Applied Pharmacology, 2015, 289, 397-408.	1.3	89
26	Flat laminated microbial mat communities. Earth-Science Reviews, 2009, 96, 163-172.	4.0	84
27	Biogenic magnetite as a primary remanence carrier in limestone deposits. Physics of the Earth and Planetary Interiors, 1987, 46, 289-303.	0.7	75
28	Biogenic magnetite in stromatolites. II. Occurrence in ancient sedimentary environments. Precambrian Research, 1989, 43, 305-315.	1.2	68
29	Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. FEMS Microbiology Ecology, 2002, 41, 59-67.	1.3	64
30	Whither or wither geomicrobiology in the era of 'community metagenomics'. Nature Reviews Microbiology, 2005, 3, 572-578.	13.6	59
31	Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. BioSystems, 1990, 23, 345-357.	0.9	58
32	Microbial Arsenic Metabolism: New Twists on an Old Poison. Microbe Magazine, 2010, 5, 53-59.	0.4	57
33	Light-Dependant Biostabilisation of Sediments by Stromatolite Assemblages. PLoS ONE, 2008, 3, e3176.	1.1	50
34	Autotrophic microbial arsenotrophy in arsenic-rich soda lakes. FEMS Microbiology Letters, 2017, 364, .	0.7	49
35	Isolation of a New Arsenate-Respiring Bacterium–Physiological and Phylogenetic Studies. Geomicrobiology Journal, 2002, 19, 41-52.	1.0	48
36	Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California. Extremophiles, 2012, 16, 727-742.	0.9	48

#	Article	IF	CITATIONS
37	Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. I. Methods of in situ study of the laminated sediments. Precambrian Research, 1983, 20, 479-492.	1.2	46
38	Microbial Reduction of Chromate in the Presence of Nitrate by Three Nitrate Respiring Organisms. Frontiers in Microbiology, 2012, 3, 416.	1.5	41
39	Arsenic and the gastrointestinal tract microbiome. Environmental Microbiology Reports, 2020, 12, 136-159.	1.0	41
40	TEM analysis of microbial mediated sedimentation and lithification in modern marine stromatolites. American Mineralogist, 2001, 86, 826-833.	0.9	38
41	Respiratory Selenite Reductase from Bacillus selenitireducens Strain MLS10. Journal of Bacteriology, 2019, 201, .	1.0	37
42	Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 516-528.	0.9	32
43	Evidence for Iron-Dependent Nitrate Respiration in the Dissimilatory Iron-Reducing Bacterium Geobacter metallireducens. Applied and Environmental Microbiology, 2001, 67, 3750-3752.	1.4	29
44	Gaia and her microbiome. FEMS Microbiology Ecology, 2017, 93, fiw247.	1.3	29
45	Biogenic magnetite in stromatolites. I. Occurrence in modern sedimentary environments. Precambrian Research, 1989, 43, 295-304.	1.2	25
46	Microbial selenium metabolism: a brief history, biogeochemistry and ecophysiology. FEMS Microbiology Ecology, 2020, 96, .	1.3	24
47	The stratified microbial community at Laguna Figueroa, Baja California, Mexico: A possible model for prephanerozoic laminated microbial communities preserved in cherts. Origins of Life and Evolution of Biospheres, 1984, 14, 671-679.	0.6	23
48	The dysaerobic zone revisited: a magnetic facies?. Geological Society Special Publication, 1991, 58, 187-199.	0.8	22
49	Evidence for a novel nitrate reductase in the dissimilatory iron-reducing bacteriumGeobacter metallireducens. FEMS Microbiology Letters, 1993, 106, 53-58.	0.7	22
50	Arsenolipids in Cultured Picocystis Strain ML and Their Occurrence in Biota and Sediment from Mono Lake, California. Life, 2020, 10, 93.	1.1	20
51	Methane, arsenic, selenium and the origins of the DMSO reductase family. Scientific Reports, 2020, 10, 10946.	1.6	20
52	A proteome investigation of roxarsone degradation by Alkaliphilus oremlandii strain OhILAs. Metallomics, 2010, 2, 133-139.	1.0	19
53	Living Dendrolitic Microbial Mats in Hamelin Pool, Shark Bay, Western Australia. Geosciences (Switzerland), 2018, 8, 212.	1.0	19
54	Pigment-protein diversity in chlorosomes of green phototrophic bacteria. Archives of Microbiology, 1990, 154, 422-427.	1.0	18

#	Article	IF	CITATIONS
55	The center of olfactory bulbâ€seeded αâ€synucleinopathy is the limbic system and the ensuing pathology is higher in male than in female mice. Brain Pathology, 2019, 29, 741-770.	2.1	18
56	Endosymbiotic bacteria associated with the intracellular green algae ofHydra viridis. Current Microbiology, 1978, 1, 227-232.	1.0	17
57	A NEW STRAIN OFPARATETRAMITUS JUGOSUSFROM LAGUNA FIGUEROA, BAJA CALIFORNIA, MEXICO. Biological Bulletin, 1983, 165, 241-264.	0.7	15
58	The microbial community at laguna Figueroa, Baja California Mexico: From miles to microns. Origins of Life and Evolution of Biospheres, 1985, 15, 347-352.	0.8	14
59	The physiology and evolution of microbial selenium metabolism. Metallomics, 2021, 13, .	1.0	14
60	Mobilifilum chasei: Morphology and ecology of a spirochete from an intertidal stratified microbial mat community. Archives of Microbiology, 1990, 153, 422-427.	1.0	13
61	Mapping the protein profile involved in the biotransformation of organoarsenicals using an arsenic metabolizing bacterium. Metallomics, 2014, 6, 1958-1969.	1.0	12
62	Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. Journal of Biological Inorganic Chemistry, 2020, 25, 547-569.	1.1	12
63	A Microbial Arsenic Cycle in Sediments of an Acidic Mine Impoundment: Herman Pit, Clear Lake, California. Geomicrobiology Journal, 2016, 33, 677-689.	1.0	9
64	Unraveling the inner workings of respiratory arsenate reductase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9051-9053.	3.3	8
65	Determining conventional and unconventional oil and gas well brines in natural samples III: mass ratio analyses using both anions and cations. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 24-32.	0.9	7
66	Editorial: microbes vs. metals: harvest and recycle. FEMS Microbiology Ecology, 2021, 97, .	1.3	6
67	Modern stromatolite phototrophic communities: a comparative study of procaryote and eucaryote phototrophs using variable chlorophyll fluorescence. FEMS Microbiology Ecology, 2012, 82, 584-596.	1.3	5
68	Discovery of Chlorophyll d: Isolation and Characterization of a Far-Red Cyanobacterium from the Original Site of Manning and Strain (1943) at Moss Beach, California. Microorganisms, 2022, 10, 819.	1.6	2
69	Distinctive Microbial Structures and the Pre-Phanerozoic Fossil Record. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 1983, 7, 335-369.	0.2	0
70	Elso sterrenberg barghoorn June 30, 1915 – January 27, 1984. Origins of Life and Evolution of Biospheres, 1984, 15, 1-3.	0.8	0
71	Foreword. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 433-433.	0.9	0
72	Metabolomic changes in response to toxic arsenite. Environmental Microbiology, 2017, 19, 413-414.	1.8	0