Rodrigo Troncoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7562196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exercise regulation of hepatic lipid droplet metabolism. Life Sciences, 2022, 298, 120522.	4.3	10
2	Hydrogen sulfide disrupts insulin-induced glucose uptake in L6 skeletal muscle cells. Food and Chemical Toxicology, 2022, , 113083.	3.6	0
3	Glucocorticoid Receptor β Overexpression Has Agonist-Independent Insulin-Mimetic Effects on HepC2 Glucose Metabolism. International Journal of Molecular Sciences, 2022, 23, 5582.	4.1	2
4	Anthocyanins from Aristotelia chilensis Prevent Olanzapine-Induced Hepatic-Lipid Accumulation but Not Insulin Resistance in Skeletal Muscle Cells. Molecules, 2021, 26, 6149.	3.8	1
5	Differential Effects of Oleic and Palmitic Acids on Lipid Droplet-Mitochondria Interaction in the Hepatic Cell Line HepG2. Frontiers in Nutrition, 2021, 8, 775382.	3.7	31
6	Early left atrial dysfunction is associated with suboptimal cardiovascular health. Echocardiography, 2020, 37, 47-54.	0.9	2
7	Moderate Aerobic Exercise Training Prevents the Augmented Hepatic Glucocorticoid Response Induced by High-Fat Diet in Mice. International Journal of Molecular Sciences, 2020, 21, 7582.	4.1	5
8	β-Hydroxybutyrate Increases Exercise Capacity Associated with Changes in Mitochondrial Function in Skeletal Muscle. Nutrients, 2020, 12, 1930.	4.1	14
9	Mifepristone for Treatment of Metabolic Syndrome: Beyond Cushing's Syndrome. Frontiers in Pharmacology, 2020, 11, 429.	3.5	12
10	Exercise regulates lipid droplet dynamics in normal and fatty liver. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158519.	2.4	29
11	Polycystin-2 Is Required for Starvation- and Rapamycin-Induced Atrophy in Myotubes. Frontiers in Endocrinology, 2019, 10, 280.	3.5	4
12	Palmitic Acid Reduces the Autophagic Flux and Insulin Sensitivity Through the Activation of the Free Fatty Acid Receptor 1 (FFAR1) in the Hypothalamic Neuronal Cell Line N43/5. Frontiers in Endocrinology, 2019, 10, 176.	3.5	38
13	Herpud1 impacts insulin-dependent glucose uptake in skeletal muscle cells by controlling the Ca2+-calcineurin-Akt axis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1653-1662.	3.8	13
14	Mifepristone enhances insulin-stimulated Akt phosphorylation and glucose uptake in skeletal muscle cells. Molecular and Cellular Endocrinology, 2018, 461, 277-283.	3.2	20
15	Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state?. Free Radical Biology and Medicine, 2018, 124, 61-78.	2.9	61
16	Metabolic Syndrome and Antipsychotics: The Role of Mitochondrial Fission/Fusion Imbalance. Frontiers in Endocrinology, 2018, 9, 144.	3.5	24
17	Hyperosmotic stress stimulates autophagy via polycystin-2. Oncotarget, 2017, 8, 55984-55997.	1.8	34
18	Atrial Function Assessed by Speckle Tracking Echocardiography Is a Good Predictor of Postoperative Atrial Fibrillation in Elderly Patients. Echocardiography, 2016, 33, 242-248.	0.9	24

Rodrigo Troncoso

#	Article	IF	CITATIONS
19	Regulation of cardiomyocyte autophagy by calcium. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E587-E596.	3.5	9
20	Basal autophagy protects cardiomyocytes from doxorubicin-induced toxicity. Toxicology, 2016, 370, 41-48.	4.2	33
21	Autophagy Networks in Cardiovascular Diseases. , 2016, , 297-322.		Ο
22	Glucocorticoid resistance in chronic diseases. Steroids, 2016, 115, 182-192.	1.8	85
23	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
24	HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor. Free Radical Biology and Medicine, 2016, 90, 206-218.	2.9	31
25	Autophagy in the Onset of Atrial Fibrillation. , 2015, , 193-201.		Ο
26	Unsaturated fatty acids induce nonâ \in canonical autophagy. EMBO Journal, 2015, 34, 1025-1041.	7.8	147
27	FK866 compromises mitochondrial metabolism and adaptive stress responses in cultured cardiomyocytes. Biochemical Pharmacology, 2015, 98, 92-101.	4.4	17
28	Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Communication and Signaling, 2014, 12, 68.	6.5	37
29	Drp1 Loss-of-function Reduces Cardiomyocyte Oxygen Dependence Protecting the Heart From Ischemia-reperfusion Injury. Journal of Cardiovascular Pharmacology, 2014, 63, 477-487.	1.9	88
30	Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway. Diabetes, 2014, 63, 75-88.	0.6	195
31	Organelle communication: Signaling crossroads between homeostasis and disease. International Journal of Biochemistry and Cell Biology, 2014, 50, 55-59.	2.8	46
32	New insights into IGF-1 signaling in the heart. Trends in Endocrinology and Metabolism, 2014, 25, 128-137.	7.1	190
33	Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle, 2014, 13, 2281-2295.	2.6	89
34	Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca ²⁺ uptake. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1-E13.	3.5	49
35	Alteration in mitochondrial Ca 2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Communication and Signaling, 2014, 12, 68.	6.5	15
36	Herp depletion protects from protein aggregation by up-regulating autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3295-3305.	4.1	32

Rodrigo Troncoso

#	Article	IF	CITATIONS
37	Regulation of cardiac autophagy by insulinâ€like growth factor 1. IUBMB Life, 2013, 65, 593-601.	3.4	18
38	Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1334-1344.	3.8	37
39	Cardiovascular autophagy. Autophagy, 2013, 9, 1455-1466.	9.1	162
40	Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovascular Research, 2012, 93, 320-329.	3.8	124
41	Mitochondria, Myocardial Remodeling, and Cardiovascular Disease. Current Hypertension Reports, 2012, 14, 532-539.	3.5	61
42	Attenuation of endoplasmic reticulum stress using the chemical chaperone 4-phenylbutyric acid prevents cardiac fibrosis induced by isoproterenol. Experimental and Molecular Pathology, 2012, 92, 97-104.	2.1	102
43	Beta2-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 23-31.	3.8	116
44	Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. Journal of Cell Science, 2011, 124, 2143-2152.	2.0	483
45	Iron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide. Free Radical Biology and Medicine, 2010, 48, 526-534.	2.9	39
46	Matrix metalloproteinase-9 activity is associated to oxidative stress in patients with acute coronary syndrome. International Journal of Cardiology, 2010, 143, 98-100.	1.7	18
47	Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 509-518.	3.8	102
48	Differential Participation of Angiotensin II Type 1 and 2 Receptors in the Regulation of Cardiac Cell Death Triggered by Angiotensin II. American Journal of Hypertension, 2009, 22, 569-576.	2.0	15
49	Gln ²⁷ →Cluβ ₂ â€Adrenergic Receptor Polymorphism in Heart Failure Patients: Differential Clinical and Oxidative Response to Carvedilol. Basic and Clinical Pharmacology and Toxicology, 2009, 104, 374-378.	2.5	22
50	Trypanosoma cruzi calreticulin: A possible role in Chagas' disease autoimmunity. Molecular Immunology, 2009, 46, 1092-1099.	2.2	33
51	Hyperosmotic stress-dependent NFκB activation is regulated by reactive oxygen species and IGF-1 in cultured cardiomyocytes. FEBS Letters, 2006, 580, 4495-4500.	2.8	34
52	Effects of Carvedilol Upon Intra- and Interventricular Synchrony in Patients With Chronic Heart Failure. American Journal of Cardiology, 2005, 96, 267-269.	1.6	11