Krishnaswamy Nandakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7561897/publications.pdf

Version: 2024-02-01

231 papers

5,321 citations

70961 41 h-index 57 g-index

233 all docs 233 docs citations

times ranked

233

3794 citing authors

#	Article	IF	CITATIONS
1	Computational fluid dynamic simulations of regular bubble patterns in pulsed fluidized beds using a twoâ€fluid model. Canadian Journal of Chemical Engineering, 2022, 100, 405-422.	0.9	10
2	Experimental and <scp>CFD</scp> study of sodium alginate droplets impacting onto immiscible deep liquid surface. Canadian Journal of Chemical Engineering, 2022, 100, .	0.9	1
3	Further contributions to the dynamics of a freely rotating elliptical particle in shear flow. Canadian Journal of Chemical Engineering, 2022, 100, 1359-1373.	0.9	1
4	Microfluidic Applications in Drug Development: Fabrication of Drug Carriers and Drug Toxicity Screening. Micromachines, 2022, 13, 200.	1.4	8
5	Perspectives on Manufacturing Innovation in Chemical Process Industries. ACS Engineering Au, 2022, 2, 3-11.	2.3	6
6	A perspective on <i>The Canadian Journal of Chemical Engineering ⟨ i⟩ commemorating its 100th volume: 1929–2021. Canadian Journal of Chemical Engineering, 2022, 100, 1983-2010.</i>	0.9	3
7	Chemical engineering at crossroads. Canadian Journal of Chemical Engineering, 2022, 100, 2011-2027.	0.9	3
8	Nonspecular Reflection of Droplets. Small, 2021, 17, 2006695.	5.2	14
9	Droplet Manipulations: Nonspecular Reflection of Droplets (Small 3/2021). Small, 2021, 17, 2170009.	5.2	1
10	Instabilities of a freely moving spherical particle in a Newtonian fluid: Direct Numerical Simulation. International Journal of Chemical Reactor Engineering, 2021, 19, 699-715.	0.6	1
11	Improved mass transfer performance of membrane units in a toroidal helical pipeâ€"Reduction of concentration polarization by secondary flows. Chemical Engineering and Processing: Process Intensification, 2021, , 108759.	1.8	1
12	Flow past a single stationary sphere, 1. Experimental and numerical techniques. Powder Technology, 2020, 365, 115-148.	2.1	28
13	Flow past a single stationary sphere, 2. Regime mapping and effect of external disturbances. Powder Technology, 2020, 365, 215-243.	2.1	34
14	Enhancement of Heat Transfer in Laminar Flows Using a Toroidal Helical Pipe. Industrial & Engineering Chemistry Research, 2020, 59, 3922-3933.	1.8	5
15	Microfluidics-Based Systems in Diagnosis of Alzheimer's Disease and Biomimetic Modeling. Micromachines, 2020, 11, 787.	1.4	18
16	Preparation and properties of magnetic polymer microspheres. Polymer, 2020, 199, 122569.	1.8	6
17	Behavior of particle swarms at low and moderate Reynolds numbers using computational fluid dynamics—Discrete element model. Physics of Fluids, 2020, 32, .	1.6	14
18	Heat Generation and Accumulation from Industrial Wastes in Landfills. , 2020, , .		0

#	Article	IF	Citations
19	Numerical investigation of pulsed fluidized bed using CFD-DEM: Insights on the dynamics. Powder Technology, 2020, 363, 745-756.	2.1	11
20	Computational fluid dynamics. , 2019, , 21-238.		21
21	Effect of Schmidt number and D/d ratio on mass transfer through gas-solid and liquid-solid packed beds: Direct numerical simulations. Powder Technology, 2019, 354, 529-539.	2.1	17
22	Study of granular self-organization inside a cylinder driven by an orbital-shaker using discrete element method. Chemical Engineering Science, 2019, 209, 115194.	1.9	1
23	Anthropogenic spherules in Zuari estuary, south west coast of India. Marine Pollution Bulletin, 2019, 143, 1-5.	2.3	6
24	Insights into the physics of dominating frequency modes for flow past a stationary sphere: Direct numerical simulations. Physics of Fluids, 2019, 31, .	1.6	20
25	Numerical modelling of microwave heating of a porous catalyst bed. Journal of Microwave Power and Electromagnetic Energy, 2019, 53, 24-47.	0.4	11
26	Engineering a Bi-Conical Microchip as Vascular Stenosis Model. Micromachines, 2019, 10, 790.	1.4	0
27	Effective Geometric Algorithms for Immersed Boundary Method Using Signed Distance Field. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141, .	0.8	8
28	Study of a toroidal-helical pipe as an innovative static mixer in laminar flows. Chemical Engineering Journal, 2019, 359, 446-458.	6.6	22
29	Spray characteristics of liquid-liquid Pintle injector. Experimental Thermal and Fluid Science, 2018, 97, 324-340.	1.5	22
30	Optimal Design of Bypass Line for an Industrial-Scale 8-Leg Polyolefin Loop Reactor to Manage Slurry Dispersion Using Hydraulic and CFD Simulations. Industrial & Engineering Chemistry Research, 2018, 57, 6068-6079.	1.8	3
31	Investigations about the effect of fractal distributors on the hydrodynamics of fractal packs of novel plate and frame designs. Chemical Engineering Science, 2018, 177, 195-209.	1.9	5
32	Experimental study and CFD simulation of the multiphase flow conditions encountered in a Novel Down-flow bubble column. Chemical Engineering Journal, 2018, 350, 507-522.	6.6	25
33	Approaches to the Numerical Estimates of Grid Convergence of NSE in the Presence of Singularities. International Journal of Nonlinear Sciences and Numerical Simulation, 2018, 19, 281-287.	0.4	0
34	Direct numerical simulation study of end effects and D/d ratio on mass transfer in packed beds. International Journal of Heat and Mass Transfer, 2018, 127, 234-244.	2.5	36
35	Axial flow in a two-dimensional microchannel induced by a travelling temperature wave imposed at the bottom wall. Journal of Fluid Mechanics, 2018, 848, 1040-1072.	1.4	1
36	Bubble generated turbulence and direct numerical simulations. Chemical Engineering Science, 2017, 157, 26-75.	1.9	45

#	Article	IF	Citations
37	Simulation of a Large-Scale FCC Riser Using a Combination of MP-PIC and Four-Lump Oil-Cracking Kinetic Models. Energy &	2.5	35
38	Mixing in oscillating columns: Experimental and numerical studies. Chemical Engineering Science, 2017, 168, 78-89.	1.9	17
39	UWB Sensing Antenna, Reconfigurable Transceiver and Reconfigurable Antenna Based Cognitive Radio Test Bed. Wireless Personal Communications, 2017, 96, 3435-3462.	1.8	8
40	Spatially resolved mass transfer coefficient for moderate Reynolds number flows in packed beds: Wall effects. International Journal of Heat and Mass Transfer, 2017, 110, 406-415.	2.5	31
41	Controlling the Flow Structure in Fluidized Bed: A CFD-DEM Approach. Springer Proceedings in Physics, 2017, , 619-626.	0.1	1
42	Numerical simulation of a commercial FCC regenerator using Multiphase Particle-in-Cell methodology (MP-PIC). Advanced Powder Technology, 2017, 28, 2947-2960.	2.0	37
43	Computational study on the effect of slug dynamics on the operation of a polyolefin 8-leg loop reactor of industrial scale. Powder Technology, 2017, 319, 452-462.	2.1	6
44	Spray and atomization characteristics of gas-centered swirl coaxial injectors. International Journal of Spray and Combustion Dynamics, 2017, 9, 127-140.	0.4	9
45	CFD with population balance model to predict droplet size distribution in submerged turbulent multiphase jets. Canadian Journal of Chemical Engineering, 2016, 94, 2072-2085.	0.9	1
46	Development and validation of a new drag law using mechanical energy balance approach for DEM–CFD simulation of gas–solid fluidized bed. Chemical Engineering Journal, 2016, 302, 395-405.	6.6	52
47	Oil-material fractionation in Gulf deep water horizontal intrusion layer: Field data analysis with chemodynamic fate model for Macondo 252 oil spill. Marine Pollution Bulletin, 2016, 105, 110-119.	2.3	8
48	CFD investigations of particle segregation and dispersion mechanisms inside a polyolefin 8-leg loop reactor of industrial scale. Powder Technology, 2015, 284, 95-111.	2.1	9
49	Microfluidics and numerical simulation as methods for standardization of zebrafish sperm cell activation. Biomedical Microdevices, 2015, 17, 65.	1.4	24
50	Computational Modeling of Multiphase Reactors. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 347-378.	3.3	45
51	A discrete element method study of granular segregation in non-circular rotating drums. Powder Technology, 2015, 283, 549-560.	2.1	28
52	Computational fluid dynamics as a tool to understand the motility of microorganisms. Computers and Fluids, 2015, 114, 274-283.	1.3	5
53	Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device. Soft Matter, 2015, 11, 3884-3899.	1.2	37
54	Sea Surface Oil Slick Light Component Vaporization and Heavy Residue Sinking: Binary Mixture Theory and Experimental Proof of Concept. Environmental Engineering Science, 2015, 32, 694-702.	0.8	19

#	Article	IF	Citations
55	Discrete particle modeling of granular Rayleigh–Taylor instability. International Journal of Multiphase Flow, 2015, 77, 260-270.	1.6	8
56	Influence of unsteady mass transfer on dynamics of rising and sinking droplet in water: Experimental and CFD study. AICHE Journal, 2015, 61, 342-354.	1.8	5
57	On the transition to 3D modes for channel flow past a square cylinder. Canadian Journal of Chemical Engineering, 2014, 92, 2122-2137.	0.9	3
58	Computational investigations of the mixing performance inside liquid slugs generated by a microfluidic T-junction. Biomicrofluidics, 2014, 8, 054125.	1.2	25
59	Effect of surfactant on the dynamics of a crude oil droplet in water column: Experimental and numerical investigation. Canadian Journal of Chemical Engineering, 2014, 92, 2098-2114.	0.9	6
60	A numerical study on the loading of cryoprotectant cocktails-on-a-chip. Part II: The cellular experience. International Journal of Heat and Mass Transfer, 2014, 78, 1292-1299.	2.5	3
61	A numerical study on the loading of cryoprotectant cocktails-on-a-chip, Part I: Interacting miscible viscous fluids. International Journal of Heat and Mass Transfer, 2014, 78, 1284-1291.	2.5	7
62	Parallel algorithms for CFD–DEM modeling of dense particulate flows. Chemical Engineering Science, 2014, 118, 221-244.	1.9	50
63	Special issue section commemorating Professor J. B. Joshi. Canadian Journal of Chemical Engineering, 2014, 92, 2011-2012.	0.9	1
64	Numerical study on shape optimization of groove micromixers. Microfluidics and Nanofluidics, 2013, 15, 689-699.	1.0	45
65	Optimal patterning of heterogeneous surface charge for improved electrokinetic micromixing. Computers and Chemical Engineering, 2013, 49, 18-24.	2.0	28
66	Geometric optimization of liquid–liquid slug flow in a flow-focusing millifluidic device for synthesis of nanomaterials. Chemical Engineering Journal, 2013, 217, 447-459.	6.6	31
67	Modelling heat transfer for a tubular micro-solid oxide fuel cell with experimental validation. Journal of Power Sources, 2013, 233, 190-201.	4.0	11
68	Recent developments in experimental (PIV) and numerical (DNS) investigation of solid–liquid fluidized beds. Chemical Engineering Science, 2013, 92, 1-12.	1.9	31
69	A numerical study on distributions during cryoprotectant loading caused by laminar flow in a microchannel. Biomicrofluidics, 2013, 7, 24104.	1.2	16
70	The Activation of Zebrafish Sperm Cells in a Micromixer. , 2013, , .		0
71	Distributions During Cryoprotective Agent Loading in a Microchannel. , 2013, , .		O
72	A Planar Micromixer Based on Sequential Logarithmic Spirals. , 2012, , .		2

#	Article	IF	Citations
73	Numerical Simulation of Cell Motility at Low Reynolds Number. , 2012, , .		o
74	A planar microfluidic mixer based on logarithmic spirals. Journal of Micromechanics and Microengineering, 2012, 22, 055019.	1.5	49
75	Developing a Millifluidic Platform for the Synthesis of Ultrasmall Nanoclusters: Ultrasmall Copper Nanoclusters as a Case Study. Small, 2012, 8, 688-698.	5.2	58
76	Millifluidics: Developing a Millifluidic Platform for the Synthesis of Ultrasmall Nanoclusters: Ultrasmall Copper Nanoclusters as a Case Study (Small 5/2012). Small, 2012, 8, 687-687.	5.2	6
77	An investigation of fuel composition and flowâ€rate effects in a H ₂ S fuelled sofc: Experiments and thermodynamic analysis. Canadian Journal of Chemical Engineering, 2012, 90, 1033-1042.	0.9	5
78	Size Evolution of Gold Nanoparticles in a Millifluidic Reactor. ChemPhysChem, 2012, 13, 177-182.	1.0	29
79	A novel method for molecular dynamics simulation in the isothermal–isobaric ensemble. Molecular Physics, 2011, 109, 191-202.	0.8	22
80	Enforcing mass conservation in DPM-CFD models of dense particulate flows. Chemical Engineering Journal, 2011, 174, 475-481.	6.6	28
81	Nonisothermal modeling of heat transfer inside an internal batch mixer. AICHE Journal, 2011, 57, 2657-2669.	1.8	14
82	Monitoring of solid oxide fuel cell systems. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 204-219.	0.8	13
83	An efficient chained-hash-table strategy for collision handling in hard-sphere discrete particle modeling. Powder Technology, 2010, 197, 58-67.	2.1	13
84	Three-dimensional random resistor-network model for solid oxide fuel cell composite electrodes. Electrochimica Acta, 2010, 55, 3944-3950.	2.6	31
85	A phenomenological model for erosion of material in a horizontal slurry pipeline flow. Wear, 2010, 269, 190-196.	1.5	25
86	Direct numerical simulations of a freely falling sphere using fictitious domain method: Breaking of axisymmetric wake. Chemical Engineering Science, 2010, 65, 2159-2171.	1.9	17
87	Mathematical modeling of a novel tubular micro-solid oxide fuel cell and experimental validation. Chemical Engineering Science, 2010, 65, 6001-6013.	1.9	10
88	Estimation and control of solid oxide fuel cell system. Computers and Chemical Engineering, 2010, 34, 96-111.	2.0	48
89	Analysis of Electrokinetic Mixing Techniques Using Comparative Mixing Index. Micromachines, 2010, 1, 36-47.	1.4	7
90	Induced charge electro-osmotic concentration gradient generator. Biomicrofluidics, 2010, 4, 14110.	1.2	9

#	Article	IF	CITATIONS
91	Novel index for micromixing characterization and comparative analysis. Biomicrofluidics, 2010, 4, 031101.	1.2	22
92	A Fully Coupled Multiphysics Model for a H[sub 2]S SOFC. Journal of the Electrochemical Society, 2010, 157, B542.	1.3	4
93	Numerical simulation of unsteady flow in a multistage centrifugal pump using sliding mesh technique. Progress in Computational Fluid Dynamics, 2010, 10, 239.	0.1	24
94	Direct numerical simulation of free falling sphere in creeping flow. International Journal of Computational Fluid Dynamics, 2010, 24, 109-120.	0.5	17
95	Effect of cut-off distance used in molecular dynamics simulations on fluid properties. Molecular Simulation, 2010, 36, 856-864.	0.9	33
96	A scalable parallel algorithm for the direct numerical simulation of three-dimensional incompressible particulate flow. International Journal of Computational Fluid Dynamics, 2009, 23, 427-437.	0.5	7
97	Three-dimensional discrete particle model for gas–solid fluidized beds on unstructured mesh. Chemical Engineering Journal, 2009, 152, 514-529.	6.6	79
98	Collision modeling between two non-Brownian particles in multiphase flow. International Journal of Thermal Sciences, 2009, 48, 226-233.	2.6	3
99	Computational fluid dynamics modelling and experimental study of erosion in slurry jet flows. International Journal of Computational Fluid Dynamics, 2009, 23, 155-172.	0.5	38
100	Efficient Micromixing Using Induced-Charge Electroosmosis. Journal of Microelectromechanical Systems, 2009, 18, 376-384.	1.7	36
101	Hydrodynamic Simulation of Horizontal Slurry Pipeline Flow Using ANSYS-CFX. Industrial & Description of Engineering Chemistry Research, 2009, 48, 8159-8171.	1.8	128
102	Induced charge electro osmotic mixer: Obstacle shape optimization. Biomicrofluidics, 2009, 3, 22413.	1.2	35
103	Study of Solid Wall–Liquid Interaction on Pressure-Driven Liquid Transport Through a Nanopore in a Membrane. Journal of Nanoscience and Nanotechnology, 2009, 9, 793-798.	0.9	6
104	ON THE EFFICIENCY OF DISCRETE PARTICLE MODELING OF GAS-SOLID FLUIDIZED BED REACTOR. , 2009, , .		0
105	Geometrical modeling of microstructure of solid oxide fuel cell composite electrodes. Journal of Power Sources, 2008, 185, 961-966.	4.0	63
106	CFD simulation of bubbly two-phase flow in horizontal pipes. Chemical Engineering Journal, 2008, 144, 277-288.	6.6	70
107	Hydrogen and Oxygen Bubble Attachment to a Bitumen Drop. Canadian Journal of Chemical Engineering, 2008, 82, 846-849.	0.9	6
108	A comprehensive phenomenological model for erosion of materials in jet flow. Powder Technology, 2008, 187, 273-279.	2.1	129

#	Article	IF	Citations
109	Minimization of fines generation in size reduction of coals by impact crusher. Fuel Processing Technology, 2008, 89, 704-714.	3.7	13
110	Investigation of entrance and exit effects on liquid transport through a cylindrical nanopore. Physical Chemistry Chemical Physics, 2008, 10, 186-192.	1.3	20
111	Numerical Analysis of a Two-Phase Flow and Mixing Process in a Stirred Tank. International Journal of Chemical Reactor Engineering, 2008, 6, .	0.6	1
112	Comparative study between continuum and atomistic approaches of liquid flow through a finite length cylindrical nanopore. Journal of Chemical Physics, 2007, 126, 224702.	1.2	24
113	CFD modeling of columns equipped with structured packings: I. Approach based on detailed packing geometry. Asia-Pacific Journal of Chemical Engineering, 2007, 2, 336-344.	0.8	13
114	CFD Simulation of Mass Transfer Efficiency and Pressure Drop in a Structured Packed Distillation Column. Chemical Engineering and Technology, 2007, 30, 854-861.	0.9	43
115	Control relevant modeling of planer solid oxide fuel cell system. Journal of Power Sources, 2007, 163, 830-845.	4.0	105
116	A fictitious domain formulation for flows with rigid particles: A non-Lagrange multiplier version. Journal of Computational Physics, 2007, 224, 867-879.	1.9	55
117	Molecular dynamics simulation of a pressure-driven liquid transport process in a cylindrical nanopore using two self-adjusting plates. Journal of Chemical Physics, 2006, 124, 234701.	1.2	47
118	A novel approach to study the structure versus performance relationship of SOFC electrodes. Journal of Power Sources, 2006, 161, 965-970.	4.0	31
119	Model development for a SOFC button cell using H2S as fuel. Journal of Power Sources, 2006, 162, 400-414.	4.0	16
120	Erosion of polymer pellets during blending in a twin-screw extruder. AICHE Journal, 2006, 52, 1267-1270.	1.8	7
121	A Fictitious Domain Method for Particle Sedimentation. Lecture Notes in Computer Science, 2006, , 544-551.	1.0	2
122	An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions. International Journal of Mineral Processing, 2005, 75, 69-82.	2.6	32
123	Development of a Novel Vertical-Sheet Structured Packing. Chemical Engineering Research and Design, 2005, 83, 515-526.	2.7	5
124	A projection scheme for incompressible multiphase flow using adaptive Eulerian grid: 3D validation. International Journal for Numerical Methods in Fluids, 2005, 48, 455-466.	0.9	4
125	Characteristics of Sprays Formed by Impingement of a Pair of Liquid Jets. Journal of Propulsion and Power, 2004, 20, 76-82.	1.3	6
126	Effect of charged colloidal particles on adsorption of surfactants at oil–water interface. Journal of Colloid and Interface Science, 2004, 274, 625-630.	5.0	46

#	Article	IF	CITATIONS
127	Modeling of polymer melting, drop deformation, and breakup under shear flow. Polymer Engineering and Science, 2004, 44, 1258-1266.	1.5	15
128	A projection scheme for incompressible multiphase flow using adaptive Eulerian grid. International Journal for Numerical Methods in Fluids, 2004, 45, 1-19.	0.9	25
129	A novel experimental technique to study single bubble–bitumen attachment in flotation. International Journal of Mineral Processing, 2004, 74, 15-29.	2.6	40
130	Effect of calcium ion and montmorillonite clay on bitumen displacement by water on a glass surface. Fuel, 2004, 83, 17-22.	3.4	26
131	Investigation of the Melting Mechanism in a Twin-Screw Extruder Using a Pulse Method and Online Measurement. Industrial & Description (2004, 43, 6822-6831).	1.8	18
132	CFD SIMULATION AND EXPERIMENTAL STUDY OF FLOW IN PACKED BUBBLE COLUMNS. Chemical Engineering Communications, 2004, 191, 1417-1436.	1.5	0
133	A New Device to Determine Bitumen Extraction from Oil Sands. Canadian Journal of Chemical Engineering, 2004, 82, 752-762.	0.9	6
134	Bubble Size Distributions for Dispersed Air & Dispersed Rir & Dispersed Rir & Dispersed Ripeline. Canadian Journal of Chemical Engineering, 2004, 82, 858-864.	0.9	9
135	On-line Visualization of PS/PP Melting Mechanisms in a Co-rotating Twin Screw Extruder. International Polymer Processing, 2004, 19, 342-349.	0.3	9
136	A 3D Projection Scheme for Incompressible Multiphase Flows Using Dynamic Front Refinement and Reconnection. Lecture Notes in Computer Science, 2004, , 17-24.	1.0	0
137	CFD modeling of flow patterns and hydraulics of commercial-scale sieve trays. AICHE Journal, 2003, 49, 910-924.	1.8	63
138	Experimental and simulation studies of heat transfer in polymer melts. AICHE Journal, 2003, 49, 1372-1382.	1.8	4
139	Effect of surface mobility on the particle sliding along a bubble or a solid sphere. Journal of Colloid and Interface Science, 2003, 259, 81-88.	5.0	20
140	A finite element technique for multifluid incompressible flow using Eulerian grids. Journal of Computational Physics, 2003, 187, 255-273.	1.9	45
141	A fictitious domain/finite element method for particulate flows. Journal of Computational Physics, 2003, 192, 105-123.	1.9	64
142	Attachment of individual particles to a stationary air bubble in model systems. International Journal of Mineral Processing, 2003, 68, 47-69.	2.6	41
143	Bubble size in coalescence dominant regime of turbulent air–water flow through horizontal pipes. International Journal of Multiphase Flow, 2003, 29, 1451-1471.	1.6	45
144	Combustion and deposit formation behavior on the fireside surfaces of a pulverized fuel boiler fired with a blend of coal and petroleum coke. Combustion Science and Technology, 2003, 175, 1625-1647.	1,2	3

#	Article	IF	CITATIONS
145	Geometry-Based Model for Predicting Mass Transfer in Packed Columns. Industrial & Engineering Chemistry Research, 2003, 42, 5373-5382.	1.8	10
146	Highly accurate solutions of the bifurcation structure of mixed-convection heat transfer using spectral method. International Journal for Numerical Methods in Fluids, 2002, 40, 619-638.	0.9	2
147	Liquid holdup distribution in packed columns: gamma ray tomography and CFD simulation. Chemical Engineering and Processing: Process Intensification, 2002, 41, 473-483.	1.8	59
148	Influence of water-soluble and water-insoluble natural surface active components on the stability of water-in-toluene-diluted bitumen emulsion. Fuel, 2002, 81, 1859-1869.	3.4	60
149	CFD Simulation and Experimental Study of Liquid Dispersion in Randomly Packed Metal Pall Rings. Chemical Engineering Research and Design, 2002, 80, 135-144.	2.7	23
150	Predicting liquid flow profile in randomly packed beds from computer simulation. AICHE Journal, 2001, 47, 1770-1779.	1.8	18
151	Porosity distribution in random packed columns by gamma ray tomography. Chemical Engineering and Processing: Process Intensification, 2001, 40, 209-219.	1.8	48
152	A Lagrange Multipliers/Fictitious Domain Approach for Particulate Flow. Lecture Notes in Computer Science, 2001, , 409-416.	1.0	1
153	Experimental studies of liquid flow maldistribution in a random packed column. Canadian Journal of Chemical Engineering, 2000, 78, 449-457.	0.9	33
154	Hydrodynamics in a gravity settling vessel: CFD modelling with LDA validation. Canadian Journal of Chemical Engineering, 2000, 78, 1046-1055.	0.9	5
155	A study on daughter droplets formation in bitumen/glass/water contact line displacement due to instability. Fuel, 2000, 79, 837-841.	3.4	4
156	Modelling and Simulation of Flow Maldistribution in Random Packed Columns with Gas-Liquid Countercurrent Flow. Chemical Engineering Research and Design, 2000, 78, 378-388.	2.7	43
157	CFD Modeling of Mass-Transfer Processes in Randomly Packed Distillation Columns. Industrial & Engineering Chemistry Research, 2000, 39, 1369-1380.	1.8	50
158	DISTILLATION Tray Columns: Performance. , 2000, , 1140-1145.		1
159	Bifurcation study of flow through rotating curved ducts. Physics of Fluids, 1999, 11, 2030-2043.	1.6	30
160	Cramer's Rule for Non-Square Matrices: 10618. American Mathematical Monthly, 1999, 106, 865.	0.2	1
161	Continuous separation of suspensions containing light and heavy particle species. Canadian Journal of Chemical Engineering, 1999, 77, 1003-1012.	0.9	9
162	Predicting geometrical properties of random packed beds from computer simulation. AICHE Journal, 1999, 45, 2286-2297.	1.8	43

#	Article	IF	CITATIONS
163	Symbolic Computation as a Tool for High-Order Long-Wave Stability Analysis of Thin Film Flows with Coupled Transport Processes. Journal of Computational Physics, 1999, 150, 1-16.	1.9	13
164	A comparative study of two-phase flow models relevant to bubble column dynamics. Journal of Fluid Mechanics, 1999, 394, 73-96.	1.4	18
165	Model for Liquid Phase Flow on Sieve Trays. Chemical Engineering Research and Design, 1998, 76, 843-848.	2.7	35
166	A bifurcation study of natural convection in porous media with internal heat sources: the non-Darcy effects. International Journal of Heat and Mass Transfer, 1998, 41, 383-392.	2.5	22
167	A Visual Study of High Grade Oil Sand Disintegration Process. Journal of Colloid and Interface Science, 1998, 205, 201-203.	5.0	4
168	A threeâ€dimensional model for simulating the maldistribution of liquid flow in random packed beds. Canadian Journal of Chemical Engineering, 1998, 76, 161-166.	0.9	7
169	A stochastic model for the simulation of the natural flow in random packed columns. Canadian Journal of Chemical Engineering, 1998, 76, 183-189.	0.9	5
170	Effect of NaCl and MIBC/kerosene on bitumen displacement by water on a glass surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 71-80.	2.3	18
171	Effect of Hydrophobic and Hydrophilic Clays on Bitumen Displacement by Water on a Glass Surface. Industrial & Engineering Chemistry Research, 1998, 37, 959-965.	1.8	17
172	A Theoretical Correction of the Ouchiyama and Tanaka Formula for Predicting Average Porosity of Packed Beds Consisting of Nonuniform Spheres. Industrial & Engineering Chemistry Research, 1998, 37, 3490-3496.	1.8	9
173	Further contributions on the two-dimensional flow in a sudden expansion. Journal of Fluid Mechanics, 1997, 330, 169-188.	1.4	134
174	The correct mathematical description and a suggested solution method for a model in packed columns A note on "A new technique for the determination of mass transfer coefficients in packed columns for physical gas absorption systems―[Chem. Eng. J., 57 (1995) 67]. Chemical Engineering Journal, 1997, 66, 149-150.	6.6	1
175	Modeling and control of multivariable processes: Dynamic PLS approach. AICHE Journal, 1997, 43, 2307-2322.	1.8	143
176	On bitumen liberation from oil sands. Canadian Journal of Chemical Engineering, 1997, 75, 476-479.	0.9	14
177	A Model for Detachment of a Partially Wetting Drop from a Solid Surface by Shear Flow. Journal of Colloid and Interface Science, 1997, 190, 253-257.	5.0	61
178	Secondary instability of flow in a curved duct of square cross-section. Journal of Fluid Mechanics, 1996, 323, 387-409.	1.4	25
179	Instability and transitions of flow in a curved square duct: the development of two pairs of Dean vortices. Journal of Fluid Mechanics, 1996, 314, 227-246.	1.4	37
180	THREE-DIMENSIONAL VISCOUS FLOW THROUGH A ROTATING CHANNEL: A PSEUDOSPECTRAL MATRIX METHOD APPROACH. International Journal for Numerical Methods in Fluids, 1996, 23, 379-396.	0.9	6

#	Article	IF	Citations
181	A Study of Oil Displacement on Model Surfaces. Journal of Colloid and Interface Science, 1996, 182, 82-94.	5.0	81
182	Steady spatial oscillations in a curved duct of square crossâ€section. Physics of Fluids, 1996, 8, 3264-3270.	1.6	18
183	Identification of Hammerstein models using multivariate statistical tools. Chemical Engineering Science, 1995, 50, 3599-3613.	1.9	50
184	Multiple, twoâ€dimensional solutions in a rotating straight pipe. Physics of Fluids, 1995, 7, 1568-1575.	1.6	6
185	LAMINAR CONVECTION IN A UNIFORMLY HEATED HORIZONTAL PIPE USING SYMBOLIC COMPUTATION. International Journal of Computational Fluid Dynamics, 1994, 3, 193-216.	0.5	1
186	A bifurcation study of convective heat transfer in a heleâ€shaw cell. Canadian Journal of Chemical Engineering, 1994, 72, 457-467.	0.9	3
187	A bifurcation study of viscous flow through a rotating curved duct. Journal of Fluid Mechanics, 1994, 262, 353-375.	1.4	59
188	Development of three-dimensional, streamwise-periodic flows in mixed-convection heat transfer. Journal of Fluid Mechanics, 1993, 255, 683.	1.4	4
189	Multiple, twoâ€dimensional solutions to the Dean problem in curved triangular ducts. Physics of Fluids A, Fluid Dynamics, 1993, 5, 1182-1187.	1.6	9
190	A bifurcation study of convective heat transfer in porous media. Part II: Effect of tilt on stationary and nonstationary solutions*. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1945-1958.	1.6	6
191	An experimental and numerical study of the Dean problem: flow development towards two-dimensional multiple solutions. Journal of Fluid Mechanics, 1992, 244, 339.	1.4	114
192	A bifurcation study of chemically driven convection in a porous medium. Chemical Engineering Science, 1992, 47, 4107-4120.	1.9	15
193	A bifurcation study of mixed-convection heat transfer in horizontal ducts. Journal of Fluid Mechanics, 1991, 231, 157-187.	1.4	26
194	Flow through rotating rectangular ducts. Physics of Fluids A, Fluid Dynamics, 1991, 3, 770-781.	1.6	29
195	A bifurcation study of convective heat transfer in porous media. Physics of Fluids A, Fluid Dynamics, 1990, 2, 912-921.	1.6	17
196	Onset of twoâ€dimensional cellular flow in finite curved channels of large aspect ratio. Physics of Fluids A, Fluid Dynamics, 1990, 2, 1163-1174.	1.6	32
197	Flow transition for natural convective heat transfer in a porous medium saturated with water near 4°C. Canadian Journal of Chemical Engineering, 1990, 68, 777-785.	0.9	3
198	Transient convection in saturated porous layers with internal heat sources. International Journal of Heat and Mass Transfer, 1990, 33, 151-161.	2.5	32

#	Article	IF	CITATIONS
199	Continuous gravity separation of concentrated bidisperse suspensions in a vertical column. Chemical Engineering Science, 1990, 45, 849-857.	1.9	11
200	Continuous gravity separation of concentrated bidisperse suspensions in an inclined plate settler. International Journal of Multiphase Flow, 1990, 16, 909-919.	1.6	4
201	Continuous separation of bidisperse suspensions in inclined channels. International Journal of Multiphase Flow, 1989, 15, 815-829.	1.6	11
202	Steady laminar flow in a 90 degree planar branch. Computers and Fluids, 1989, 17, 537-553.	1.3	45
203	MIXED CONVECTION HEAT TRANSFER IN A TEE BRANCH. Numerical Heat Transfer; Part A: Applications, 1989, 16, 287-307.	1.2	10
204	Continuous gravity separation of a bidisperse suspension in a vertical column. Chemical Engineering Science, 1988, 43, 3225-3234.	1.9	22
205	Gravity separation of concentrated bidisperse suspensions in inclined plate settlers. International Journal of Multiphase Flow, 1988, 14, 519-532.	1.6	14
206	Mixed convection heat transfer in porous media in the nonâ€darcy regime. Canadian Journal of Chemical Engineering, 1988, 66, 68-74.	0.9	12
207	Settling behaviour of heavy and buoyant particles from a suspension in an inclined channel. Journal of Fluid Mechanics, 1988, 187, 301-318.	1.4	16
208	Oscillatory flows in coiled square ducts. Physics of Fluids, 1988, 31, 1348.	1.4	38
209	Effect of Nonuniform Heating on Laminar Mixed Convection in Ducts. Journal of Heat Transfer, 1987, 109, 131-137.	1.2	14
210	Bifurcation phenomena and cellular-pattern evolution in mixed-convection heat transfer. Journal of Fluid Mechanics, 1987, 177, 339-357.	1.4	15
211	Natural convection with combined heat and mass transfer buoyancy effects in non-homogeneous porous medium. International Journal of Heat and Mass Transfer, 1987, 30, 2651-2656.	2.5	22
212	Gravity separation of bidisperse suspensions: Light and heavy particle species. Chemical Engineering Science, 1987, 42, 1527-1538.	1.9	47
213	Ablation of iceâ€solids and waxâ€solids mixtures in turbulent axisymmetric water jets. Canadian Journal of Chemical Engineering, 1987, 65, 420-429.	0.9	1
214	Multiple Solutions for Buoyancy-Induced Flow in Saturated Porous Media for Large Peclet Numbers. Journal of Heat Transfer, 1986, 108, 866-871.	1.2	28
215	Bifurcation phenomena of generalized newtonian fluids in curved rectangular ducts. Journal of Non-Newtonian Fluid Mechanics, 1986, 22, 35-60.	1.0	33
216	Bodyâ€Fitted Coordinates for Flow Under Sluice Gates. Journal of Hydraulic Engineering, 1985, 111, 922-933.	0.7	10

#	Article	IF	CITATIONS
217	Bifurcation in steady laminar mixed convection flow in horizontal ducts. Journal of Fluid Mechanics, 1985, 152, 145-161.	1.4	46
218	FULLY DEVELOPED LAMINAR FLOW IN A HELICAL TUBE OF FINITE PITCH. Chemical Engineering Communications, 1984, 29, 125-138.	1.5	1
219	STEADY LAMINAR FLOW THROUGH TWISTED PIPES: FLUID FLOW AND HEAT TRANSFER IN RECTANGULAR TUBES. Chemical Engineering Communications, 1983, 21, 151-173.	1.5	4
220	Bifurcation in steady laminar flow through curved tubes. Journal of Fluid Mechanics, 1982, 119, 475-490.	1.4	110
221	Laminar flow past a permeable sphere. Canadian Journal of Chemical Engineering, 1982, 60, 202-211.	0.9	63
222	Steady Laminar Flow through Twisted Pipes: Fluid Flow in Square Tubes. Journal of Heat Transfer, 1981, 103, 785-790.	1.2	22
223	Steady Laminar Flow through Twisted Pipes: Heat Transfer in Square Tubes. Journal of Heat Transfer, 1981, 103, 791-796.	1.2	18
224	Minimum reflux conditions, part I: Theory. AICHE Journal, 1981, 27, 450-460.	1.8	21
225	Part II: Numerical solution. AICHE Journal, 1981, 27, 460-465.	1.8	4
226	Fully developed viscous flow and heat transfer in curved semicircular sectors. AICHE Journal, 1979, 25, 478-487.	1.8	24
227	Fluid flow and heat transfer in internally finned helical coils. Canadian Journal of Chemical Engineering, 1977, 55, 27-36.	0.9	7
228	Flow Transition in Finned Tubes. Industrial & Engineering Chemistry Fundamentals, 1976, 15, 144-146.	0.7	4
229	Heat Transfer in Internally Finned Tubes. Journal of Heat Transfer, 1976, 98, 257-261.	1.2	58
230	Fully developed viscous flow in internally finned tubes. The Chemical Engineering Journal, 1975, 10, 113-120.	0.4	31
231	Non-Equilibrium Injection Flow in a Nanometer Capillary Channel. , 0, , .		1