
Jed N Lampe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7561081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. Journal of Biological Chemistry, 2022, 298, 101629.	1.6	4
2	Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2022, 66, 128732.	1.0	3
3	Utilization of CYP3Aâ€Specific Inhibitors to Study Cytochrome P450 CYP3A7 Activity in Neonatal Human Liver Microsomes. FASEB Journal, 2022, 36, .	0.2	0

 $\frac{1}{4}$ Identification of Aloeâ \in derived natural products as lead scaffolds for SARSâ \in CoVâ \in 2 main protease (M) Tj ETQq0 0.0 rgBT /Overlock 10 0.2 rgBT /Overlock 1

5	Development of a High-Throughput Fluorescent-Based Assay to Assess Cytochrome P450 3A7 Activity in Neonatal Human Liver Microsomes. Biophysical Journal, 2021, 120, 284a.	0.2	0
6	Inhibition of CYP3A7 DHEA-S Oxidation by Lopinavir and Ritonavir: An Alternative Mechanism for Adrenal Impairment in HIV Antiretroviral-Treated Neonates. Chemical Research in Toxicology, 2021, 34, 1150-1160.	1.7	4
7	CYP3A7 drugâ€hormone Interactions in the Neonate: Adrenal Insufficiency and Low Birthweight in the HIV infected Neonate caused by Inhibition of CYP3A7 DHEAâ€S Oxidation by Ritonavir. FASEB Journal, 2021, 35, .	0.2	0
8	Development of a Highâ€ŧhroughput Fluorescentâ€Based Assay to Assess Cytochrome P450 CYP3A7 Activity in Neonatal Human Liver Microsomes. FASEB Journal, 2021, 35, .	0.2	0
9	Expression and Characterization of <i>P. aeruginosa</i> Cytochrome P450 CYP168A1. FASEB Journal, 2021, 35, .	0.2	1
10	Characterization of fluorescent probe substrates to develop an efficient high-throughput assay for neonatal hepatic CYP3A7 inhibition screening. Scientific Reports, 2021, 11, 19443.	1.6	5
11	Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Archives of Biochemistry and Biophysics, 2019, 673, 108078.	1.4	34
12	Aqueous synthesis of a small-molecule lanthanide chelator amenable to copper-free click chemistry. PLoS ONE, 2019, 14, e0209726.	1.1	3
13	Ligand-dependent modulation of hOCT1 transport reveals discrete ligand binding sites within the substrate translocation channel. Biochemical Pharmacology, 2018, 156, 371-384.	2.0	24
14	Inhibition of CYP3A7 by Ritonavir and Lopinavir Leads to Adrenal Insufficiency in the Developing Infant by Blocking DHEAâ€& Oxidation. FASEB Journal, 2018, 32, lb657.	0.2	0
15	Digging Deeper into CYP3A Testosterone Metabolism: Kinetic, Regioselectivity, and Stereoselectivity Differences between CYP3A4/5 and CYP3A7. Drug Metabolism and Disposition, 2017, 45, 1266-1275.	1.7	38
16	Advances in the Understanding of Protein-Protein Interactions in Drug Metabolizing Enzymes through the Use of Biophysical Techniques. Frontiers in Pharmacology, 2017, 8, 521.	1.6	12
17	The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicology and Applied Pharmacology, 2016, 304, 18-29.	1.3	65
18	Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography. Journal of Biological Chemistry, 2015, 290, 10000-10017.	1.6	28

Jed N Lampe

#	Article	IF	CITATIONS
19	Cytochrome P450 Enzyme Metabolites in Lead Discovery and Development. Annual Reports in Medicinal Chemistry, 2014, 49, 347-359.	0.5	4
20	Common Drugs Inhibit Human Organic Cation Transporter 1 (OCT1)-Mediated Neurotransmitter Uptake. Drug Metabolism and Disposition, 2014, 42, 990-995.	1.7	52
21	Role of Protein–Protein Interactions in Cytochrome P450-Mediated Drug Metabolism and Toxicity. Chemical Research in Toxicology, 2014, 27, 1474-1486.	1.7	69
22	Case Studies in Modern Drug Discovery and Development. American Journal of Health-System Pharmacy, 2013, 70, 821-821.	0.5	1
23	A click chemistryâ€mediated approach to understanding survivin:caspaseâ€9 proteinâ€protein interactions. FASEB Journal, 2013, 27, 790.16.	0.2	0
24	Role of Cysteine Residues in Heme Binding to Human Heme Oxygenase-2 Elucidated by Two-dimensional NMR Spectroscopy. Journal of Biological Chemistry, 2012, 287, 35181-35191.	1.6	26
25	Active-site residues move independently from the rest of the protein in a 200 ns molecular dynamics simulation of cytochrome P450 CYP119. Archives of Biochemistry and Biophysics, 2011, 509, 127-132.	1.4	15
26	Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation. Toxicology and Applied Pharmacology, 2011, 257, 449-458.	1.3	29
27	Two-dimensional NMR and All-atom Molecular Dynamics of Cytochrome P450 CYP119 Reveal Hidden Conformational Substates. Journal of Biological Chemistry, 2010, 285, 9594-9603.	1.6	43
28	Spectral resolution of a second binding site for Nile Red on cytochrome P4503A4. Archives of Biochemistry and Biophysics, 2008, 474, 198-204.	1.4	16
29	Ligand-Induced Conformational Heterogeneity of Cytochrome P450 CYP119 Identified by 2D NMR Spectroscopy with the Unnatural Amino Acid 13C-p-Methoxyphenylalanine. Journal of the American Chemical Society, 2008, 130, 16168-16169.	6.6	32
30	Nile Red Is a Fluorescent Allosteric Substrate of Cytochrome P450 3A4. Biochemistry, 2008, 47, 509-516.	1.2	32
31	Longitudinal Study of Insulin-like Growth Factor, Insulin-like Growth Factor Binding Protein-3, and their Polymorphisms: Risk of Neoplastic Progression in Barrett's Esophagus. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 2387-2395.	1.1	37
32	NMR Studies of Ligand Binding to P450eryFProvides Insight into the Mechanism of Cooperativityâ€. Biochemistry, 2006, 45, 1673-1684.	1.2	25
33	Time-Resolved Fluorescence Studies of Heterotropic Ligand Binding to Cytochrome P450 3A4â€. Biochemistry, 2006, 45, 12204-12215.	1.2	35
34	Cysteine 98 in CYP3A4 contributes to conformational integrity required for P450 interaction with CYP reductase. Archives of Biochemistry and Biophysics, 2006, 454, 42-54.	1.4	20
35	Probing the CYP3A4 active site by cysteine scanning mutagenesis and photoaffinity labeling. Archives of Biochemistry and Biophysics, 2005, 444, 100-111.	1.4	8
36	Antisense Oligonucleotides Containing Modified Bases Inhibit in Vitro Translation of Leishmania amazonensis mRNAs by Invading the Mini-exon Hairpin. Journal of Biological Chemistry, 1999, 274, 8191-8198.	1.6	27

#	Article	IF	CITATIONS
37	Factors influencing the extent and selectivity of alkylation within triplexes by reactive G/A motif oligonucleotides. Nucleic Acids Research, 1997, 25, 4123-4131.	6.5	14