W Bradley Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7560559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exercise-induced oxidative stress in humans: Cause and consequences. Free Radical Biology and Medicine, 2011, 51, 942-950.	2.9	340
2	Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness*. Critical Care Medicine, 2011, 39, 1749-1759.	0.9	231
3	Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radical Biology and Medicine, 2009, 46, 842-850.	2.9	185
4	Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. Journal of Applied Physiology, 2010, 108, 1376-1382.	2.5	166
5	Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radical Biology and Medicine, 2010, 49, 1152-1160.	2.9	165
6	Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Critical Care Medicine, 2012, 40, 1254-1260.	0.9	151
7	Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB Journal, 2015, 29, 2894-2904.	0.5	107
8	Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Critical Care Medicine, 2012, 40, 1857-1863.	0.9	98
9	Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction. Journal of Applied Physiology, 2009, 106, 385-394.	2.5	87
10	Crosstalk between autophagy and oxidative stress regulates proteolysis in the diaphragm during mechanical ventilation. Free Radical Biology and Medicine, 2018, 115, 179-190.	2.9	83
11	Endurance exercise attenuates ventilator-induced diaphragm dysfunction. Journal of Applied Physiology, 2012, 112, 501-510.	2.5	65
12	Nuclear factor-κB signaling contributes to mechanical ventilation-induced diaphragm weakness*. Critical Care Medicine, 2012, 40, 927-934.	0.9	61
13	Skeletal Muscle Inflammation Following Repeated Bouts of Lengthening Contractions in Humans. Frontiers in Physiology, 2015, 6, 424.	2.8	49
14	Antioxidant and Vitamin D supplements for athletes: Sense or nonsense?. Journal of Sports Sciences, 2011, 29, S47-S55.	2.0	48
15	Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis. PLoS ONE, 2015, 10, e0137693.	2.5	40
16	Inhibition of Forkhead BoxO–Specific Transcription Prevents Mechanical Ventilation–Induced Diaphragm Dysfunction. Critical Care Medicine, 2015, 43, e133-e142.	0.9	32
17	Inhibition of the Ubiquitin–Proteasome Pathway Does Not Protect against Ventilator-induced Accelerated Proteolysis or Atrophy in the Diaphragm. Anesthesiology, 2014, 121, 115-126.	2.5	30
18	Negative Pressure Ventilation and Positive Pressure Ventilation Promote Comparable Levels of Ventilator-induced Diaphragmatic Dysfunction in Rats. Anesthesiology, 2013, 119, 652-662.	2.5	24

W BRADLEY NELSON

#	Article	IF	CITATIONS
19	Effects of exercise preconditioning and HSP72 on diaphragm muscle function during mechanical ventilation. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 767-781.	7.3	24
20	Adaptations to high-intensity intermittent exercise in rodents. Journal of Applied Physiology, 2009, 107, 749-754.	2.5	17
21	Delivery of Recombinant Adeno-Associated Virus Vectors to Rat Diaphragm Muscle via Direct Intramuscular Injection. Human Gene Therapy Methods, 2013, 24, 364-371.	2.1	13
22	BJSM reviews: A-Z of nutritional supplements: dietary supplements, sports nutrition foods and Ergogenic aids for health and performance Part 3. British Journal of Sports Medicine, 2009, 43, 890-892.	6.7	10
23	Cutaneous Vasodilation during Local Heating: Role of Local Cutaneous Thermosensation. Frontiers in Physiology, 2016, 7, 622.	2.8	9
24	Passive muscle heating attenuates the decline in vascular function caused by limb disuse. Journal of Physiology, 2021, 599, 4581-4596.	2.9	6
25	A Mitochondrial-targeted Antioxidant Protects against Mechanical Ventilation-induced Diaphragm Weakness. Medicine and Science in Sports and Exercise, 2010, 42, 17-18.	0.4	2
26	The Effect of High Intensity Intermittent Exercise on Plasma Erythropoietin. Medicine and Science in Sports and Exercise, 2006, 38, S88.	0.4	1
27	Calpain And Caspase-3 Participate In Regulatory Crosstalk During Disuse Muscle Atrophy. Medicine and Science in Sports and Exercise, 2010, 42, 18.	0.4	1
28	Persistent Hypohydration in College Football Players During Double Session Workouts. Medicine and Science in Sports and Exercise, 2006, 38, S176.	0.4	0
29	ARE ANTIOXIDANT SUPPLEMENTS REQUIRED FOR ACTIVE ADULTS?. ACSM's Health and Fitness Journal, 2010, 14, 11-14.	0.6	Ο
30	Oxidative stress enhances myofibrillar protein degradation via calpain and caspaseâ€3. FASEB Journal, 2010, 24, 1046.14.	0.5	0
31	Oxidative stress is required for mechanical ventilationâ€induced protease activation in the diaphragm. FASEB Journal, 2010, 24, 1046.13.	0.5	Ο
32	NF-κB Contributes to Mechanical Ventilation-induced Diaphragm Weakness. Medicine and Science in Sports and Exercise, 2010, 42, 19-20.	0.4	0
33	Pressure Support Ventilation Promotes Diaphragmatic Atrophy and Weakness. Medicine and Science in Sports and Exercise, 2010, 42, 20.	0.4	Ο
34	Endurance exercise attenuates mechanical ventilationâ€induced diaphragm weakness. FASEB Journal, 2011, 25, 1059.20.	0.5	0
35	Caspaseâ€3 is activated by intrinsic apoptotic pathways during mechanical ventilation. FASEB Journal, 2011, 25,	0.5	0
36	Increased mitochondrial ROS production is required for ventilatorâ€induced myonuclear apoptosis in the diaphragm. FASEB Journal, 2012, 26, 1075.11.	0.5	0

#	Article	IF	CITATIONS
37	Administration of recombinant adenoâ€associated virus vector to the diaphragm through direct intramuscular injection. FASEB Journal, 2012, 26, 1075.21.	0.5	0
38	Impact of prolonged mechanical ventilation on diaphragmatic protein synthesis. FASEB Journal, 2013, 27, lb784.	0.5	0
39	FoxO transcription contributes to mechanical ventilationâ€induced diaphragm atrophy and contractile dysfunction. FASEB Journal, 2013, 27, 939.1.	0.5	0
40	Matrix metalloproteinaseâ $\in 2$ is not active in the diaphragm during mechanical ventilation. FASEB Journal, 2013, 27, lb779.	0.5	0