Steve Scheiner

List of Publications by Citations

Source: https://exaly.com/author-pdf/7560470/steve-scheiner-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 15,491 113 304 h-index g-index citations papers 16,833 7.62 4.1 327 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
304	Definition of the hydrogen bond (IUPAC Recommendations 2011). <i>Pure and Applied Chemistry</i> , 2011 , 83, 1637-1641	2.1	1111
303	Fundamental Properties of the CHIIIO Interaction: Is It a True Hydrogen Bond?. <i>Journal of the American Chemical Society</i> , 1999 , 121, 9411-9422	16.4	845
302	Defining the hydrogen bond: An account (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2011 , 83, 1619-1636	2.1	738
301	Electronic structure and bonding in metal phthalocyanines, Metal=Fe, Co, Ni, Cu, Zn, Mg. <i>Journal of Chemical Physics</i> , 2001 , 114, 9780-9791	3.9	508
300	The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. <i>Accounts of Chemical Research</i> , 2013 , 46, 280-8	24.3	432
299	Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn. <i>Journal of Chemical Physics</i> , 2002 , 117, 205-219	3.9	330
298	Red- versus Blue-Shifting Hydrogen Bonds: Are There Fundamental Distinctions?. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 1784-1789	2.8	310
297	Comparison of various types of hydrogen bonds involving aromatic amino acids. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13257-64	16.4	274
296	Strength of the Calpha HO hydrogen bond of amino acid residues. <i>Journal of Biological Chemistry</i> , 2001 , 276, 9832-7	5.4	243
295	Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. <i>International Journal of Quantum Chemistry</i> , 2013 , 113, 1609-1620	2.1	230
294	Theoretical studies of proton transfers. Accounts of Chemical Research, 1985, 18, 174-180	24.3	211
293	Influence of Hybridization and Substitution on the Properties of the CHIIIO Hydrogen Bond. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 10607-10612	2.8	210
292	A new noncovalent force: comparison of PIIIN interaction with hydrogen and halogen bonds. <i>Journal of Chemical Physics</i> , 2011 , 134, 094315	3.9	189
291	Definition of the chalcogen bond (IUPAC Recommendations 2019). <i>Pure and Applied Chemistry</i> , 2019 , 91, 1889-1892	2.1	183
290	Comparison of Cooperativity in CHIIIO and OHIIIO Hydrogen Bonds. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 9161-9168	2.8	171
289	Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. <i>Chemical Physics Letters</i> , 2012 , 532, 31-35	2.5	165
288	Theoretical Studies of Excited State Proton Transfer in Small Model Systems. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 5898-5909	2.8	164

287	Effects of substituents upon the PIIIN noncovalent interaction: the limits of its strength. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 11202-9	2.8	161	
286	Weak H-bonds. Comparisons of CHIIIO to NHIIIO in proteins and PHIIIN to direct PIIIN interactions. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 13860-72	3.6	153	
285	Proton transfers in hydrogen-bonded systems. Cationic oligomers of water. <i>Journal of the American Chemical Society</i> , 1981 , 103, 315-320	16.4	139	
284	The Nonexistence of Specially Stabilized Hydrogen Bonds in Enzymes. <i>Journal of the American Chemical Society</i> , 1995 , 117, 6970-6975	16.4	130	
283	Effects of charge and substituent on the SIIIN chalcogen bond. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 3183-92	2.8	126	
282	Correction of the basis set superposition error in SCF and MP2 interaction energies. The water dimer. <i>Journal of Chemical Physics</i> , 1986 , 84, 6328-6335	3.9	124	
281	Substituent effects on CLIIIN, SIIIN, and PIIIN noncovalent bonds. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 3487-97	2.8	119	
280	SHIIIN and SHIIIP blue-shifting H-bonds and NIIIP interactions in complexes pairing HSN with amines and phosphines. <i>Journal of Chemical Physics</i> , 2011 , 134, 024312	3.9	116	
279	Contributions of NHO and CHO hydrogen bonds to the stability of beta-sheets in proteins. Journal of Physical Chemistry B, 2006 , 110, 18670-9	3.4	104	
278	Can two trivalent N atoms engage in a direct N?N noncovalent interaction?. <i>Chemical Physics Letters</i> , 2011 , 514, 32-35	2.5	99	
277	Abilities of different electron donors (D) to engage in a PIIID noncovalent interaction. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 11101-10	2.8	97	
276	Can a C-HIIIO interaction be a determinant of conformation?. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12064-71	16.4	94	
275	On the properties of XIIIN noncovalent interactions for first-, second-, and third-row X atoms. <i>Journal of Chemical Physics</i> , 2011 , 134, 164313	3.9	94	
274	Insertion of Lithium Ions into Carbon Nanotubes: An ab Initio Study. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 10397-10403	2.8	92	
273	Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds. <i>CrystEngComm</i> , 2013 , 15, 3119-3124	3.3	91	
272	Comparison between hydrogen and dihydrogen bonds among H3BNH3, H2BNH2, and NH3. <i>Journal of Chemical Physics</i> , 2003 , 119, 1473-1482	3.9	91	
271	Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF and furanTF (T = C, Si, and Ge) with NH. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 5550-5559	3.6	90	
270	Chalcogen bonding between tetravalent SF4 and amines. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 10	0849-56	90	

269	Effects of multiple substitution upon the P?N noncovalent interaction. Chemical Physics, 2011, 387, 79-8	3 4 .3	90
268	Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 5561-5568	2.8	88
267	BoronNitrogen (BN) Substitution of Fullerenes: C60 to C12B24N24 CBN Ball. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 2970-2978	2.8	85
266	Comparison of CHIIO, SHIIO, Chalcogen, and Tetrel Bonds Formed by Neutral and Cationic Sulfur-Containing Compounds. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 9189-99	2.8	81
265	Electronic structure and bonding in unligated and ligated FeII porphyrins. <i>Journal of Chemical Physics</i> , 2002 , 116, 3635-3645	3.9	81
264	Theoretical study of hydrogen bonding and proton transfer in the ground and lowest excited singlet states of tropolone. <i>Journal of Chemical Physics</i> , 1994 , 101, 9755-9765	3.9	81
263	Comparison of PIIID (D = P,N) with other noncovalent bonds in molecular aggregates. <i>Journal of Chemical Physics</i> , 2011 , 135, 184306	3.9	80
262	Relative strengths of NHO and CHO hydrogen bonds between polypeptide chain segments. Journal of Physical Chemistry B, 2005 , 109, 16132-41	3.4	80
261	Effect of solvent upon CHO hydrogen bonds with implications for protein folding. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3681-9	3.4	80
260	Proton Transfer Properties of Imidazole. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 9235-9241		80
259	Highly Selective Halide Receptors Based on Chalcogen, Pnicogen, and Tetrel Bonds. <i>Chemistry - A European Journal</i> , 2016 , 22, 18850-18858	4.8	80
258	Hydrogen Bonding and Proton Transfer in the Ground and Lowest Excited Singlet States of o-Hydroxyacetophenone. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 642-649		78
257	Noncovalent Is tacking and CH I Interactions of Aromatics on the Surface of Single-Wall Carbon Nanotubes: An MP2 Study. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 20070-20075	3.8	77
256	Critical assessment of density functional methods for study of proton transfer processes. (FHF) Chemical Physics Letters, 1995 , 234, 159-164	2.5	77
255	Primary and secondary basis set superposition error at the SCF and MP2 levels. H3NLi+ and H2OLi+. <i>Journal of Chemical Physics</i> , 1987 , 87, 1194-1204	3.9	77
254	Comparison of proton transfers in heterodimers and homodimers of NH3 and OH2. <i>Journal of Chemical Physics</i> , 1982 , 77, 4039-4050	3.9	75
253	Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases. <i>Journal of the American Chemical Society</i> , 2013 , 135, 15536-48	16.4	73
252	Comparison of Ehole tetrel bonding with Ehole halogen bonds in complexes of XCN (X = F, Cl, Br, I) and NH3. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3581-90	3.6	72

251	Performance assessment of density-functional methods for study of charge-transfer complexes. Journal of Computational Chemistry, 2003 , 24, 623-31	3.5	72	
250	Intermolecular MHIIIHR Bonding in Monohydride Mo and W Complexes. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 260-269	2.8	72	
249	Excited-State Energetics and Proton-Transfer Barriers in Malonaldehyde. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 3582-3587		72	
248	Effects of basis set and electron correlation on the calculated properties of the ammonia dimer. <i>Journal of Chemical Physics</i> , 1984 , 81, 407-409	3.9	72	
247	Ab initio comparison of H bonds and Li bonds. Complexes of LiF, LiCl, HF, and HCl with NH3. <i>Journal of Chemical Physics</i> , 1984 , 81, 4014-4017	3.9	72	
246	Intermolecular HIIIH Bonding and Proton Transfer in Semisandwich Re and Ru Complexes. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 4813-4818	2.8	71	
245	Proton transfers in hydrogen-bonded systems. 2. Electron correlation effects in diamminehydrogen(1+). <i>Journal of the American Chemical Society</i> , 1981 , 103, 2169-2173	16.4	70	
244	The potential energy surface of (NH3)2. Journal of Chemical Physics, 1986, 84, 341-347	3.9	69	
243	Sulfur-Oxygen Chalcogen Bonding Mediates AdoMet Recognition in the Lysine Methyltransferase SET7/9. <i>ACS Chemical Biology</i> , 2016 , 11, 748-54	4.9	68	
242	Tetrel, chalcogen, and CH??O hydrogen bonds in complexes pairing carbonyl-containing molecules with 1, 2, and 3 molecules of CO2. <i>Journal of Chemical Physics</i> , 2015 , 142, 034307	3.9	67	
241	Effect of adjoining aromatic ring upon excited state proton transfer, o-hydroxybenzaldehyde. <i>Computational and Theoretical Chemistry</i> , 1999 , 467, 37-49		67	
240	Hydrogen bonding and proton transfers of the amide group. <i>Journal of the American Chemical Society</i> , 1993 , 115, 1958-1963	16.4	66	
239	Comparison of Morokuma and perturbation theory approaches to decomposition of interaction energy. (NH4)+NH3. <i>Chemical Physics Letters</i> , 1990 , 166, 57-64	2.5	66	
238	Basis sets for molecular interactions. 2. Application to H3N?HF, H3N?HOH, H2O?HF, (NH3)2, and H3CH?OH2. <i>Journal of Computational Chemistry</i> , 1987 , 8, 674-682	3.5	66	
237	Hydrogen bonding and proton transfers involving triply bonded atoms. Acetylene and hydrocyanic acid. <i>Journal of the American Chemical Society</i> , 1987 , 109, 4199-4206	16.4	63	
236	Effects of carbon chain substituents on the P?N noncovalent bond. <i>Chemical Physics Letters</i> , 2012 , 536, 30-33	2.5	62	
235	DFT Calculations and Spectral Measurements of Charge-Transfer Complexes Formed by Aromatic Amines and Nitrogen Heterocycles with Tetracyanoethylene and Chloranil. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 8939-8948	2.8	62	
234	Structure, energetics, and vibrational spectrum of H2OHCl. <i>Journal of Chemical Physics</i> , 1987 , 87, 5928-	5 <u>9</u> .3 ₉ 6	62	

233	Hydrogen bonding and proton transfers involving the carboxylate group. <i>Journal of the American Chemical Society</i> , 1989 , 111, 23-31	16.4	60
232	Mo/ller B lesset treatment of electron correlation effects in (HOHOH)[] <i>Journal of Chemical Physics</i> , 1982 , 77, 4586-4593	3.9	58
231	Ab initio molecular orbital estimates of charge partitioning between Bjerrum and ionic defects in ice. <i>The Journal of Physical Chemistry</i> , 1983 , 87, 4267-4272		57
230	Noncovalent interactions in dimers and trimers of SO3 and CO. <i>Theoretical Chemistry Accounts</i> , 2014 , 133, 1	1.9	56
229	Spectroscopic and structural signature of the CH-O hydrogen bond. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 11854-60	2.8	56
228	Ab initio study of proton transfers including effects of electron correlation. <i>International Journal of Quantum Chemistry</i> , 1983 , 23, 739-751	2.1	56
227	Implications of monomer deformation for tetrel and pnicogen bonds. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 8832-8841	3.6	55
226	Proton transfer between phenol and ammonia in ground and excited electronic states. <i>Chemical Physics Letters</i> , 1996 , 262, 567-572	2.5	55
225	Intramolecular SIIIO chalcogen bond as stabilizing factor in geometry of substituted phenyl-SF3 molecules. <i>Journal of Organic Chemistry</i> , 2015 , 80, 2356-63	4.2	54
224	Comparative Strengths of Tetrel, Pnicogen, Chalcogen, and Halogen Bonds and Contributing Factors. <i>Molecules</i> , 2018 , 23,	4.8	54
223	Effects of molecular charge and methyl substitution on proton transfer between oxygen atoms. Journal of the American Chemical Society, 1984 , 106, 6266-6273	16.4	53
222	Chalcogen bonds in complexes of SOXY (X, Y = F, Cl) with nitrogen bases. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 535-41	2.8	52
221	Assembly of Effective Halide Receptors from Components. Comparing Hydrogen, Halogen, and Tetrel Bonds. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 3606-3615	2.8	50
220	Magnitude and mechanism of charge enhancement of CHIIO hydrogen bonds. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 10551-62	2.8	50
219	Effects of external ions on the energetics of proton transfers across hydrogen bonds. <i>The Journal of Physical Chemistry</i> , 1985 , 89, 262-266		49
218	Boron Mitrogen (BN) Substitution Patterns in C/BN Hybrid Fullerenes: $C60-2x(BN)x$ ($x = 11$). Journal of Physical Chemistry A, 2001 , 105, 8376-8384	2.8	48
217	Comparison of halide receptors based on H, halogen, chalcogen, pnicogen, and tetrel bonds. <i>Faraday Discussions</i> , 2017 , 203, 213-226	3.6	47
216	Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms. <i>Chemistry - A European Journal</i> , 2018 , 24, 8167-8177	4.8	47

(2010-1999)

215	Activation and Cleavage of H R Bonds through Intermolecular HH Bonding upon Reaction of Proton Donors HR with 18-Electron Transition Metal Hydrides. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 514-520	2.8	47	
214	Steric Crowding in Tetrel Bonds. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 2550-2562	2.8	45	
213	Substituent Effects in the Noncovalent Bonding of SO to Molecules Containing a Carbonyl Group. The Dominating Role of the Chalcogen Bond. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 3835-3845	2.8	44	
212	Proton transfer in the ground and first excited triplet states of malonaldehyde. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 9764-9767		44	
211	Effects of Peripheral Substituents on the Electronic Structure and Properties of Unligated and Ligated Metal Phthalocyanines, Metal = Fe, Co, Zn. <i>Journal of Chemical Theory and Computation</i> , 2005 , 1, 1201-10	6.4	43	
210	Quantum mechanical test of Marcus theory. Effects of alkylation upon proton transfer. <i>The Journal of Physical Chemistry</i> , 1986 , 90, 2969-2974		43	
209	Proton Conduction by a Chain of Water Molecules in Carbonic Anhydrase. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 6420-6426	3.4	41	
208	Coordination of anions by noncovalently bonded Ehole ligands. <i>Coordination Chemistry Reviews</i> , 2020 , 405, 213136	23.2	41	
207	Strongly bound noncovalent (SO3)n:H2CO complexes (n = 1, 2). <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 18974-81	3.6	40	
206	Vibrational frequencies and intensities of H-bonded and Li-bonded complexes. H3N??HCl and H3N??LiCl. <i>Journal of Chemical Physics</i> , 1988 , 89, 3131-3138	3.9	39	
205	The ETetrel Bond and its Influence on Hydrogen Bonding and Proton Transfer. <i>ChemPhysChem</i> , 2018 , 19, 736-743	3.2	39	
204	Complexation of n SO2 molecules (n = 1, 2, 3) with formaldehyde and thioformaldehyde. <i>Journal of Chemical Physics</i> , 2014 , 140, 034302	3.9	38	
203	Cooperativity of conventional and unconventional hydrogen bonds involving imidazole. <i>International Journal of Quantum Chemistry</i> , 2006 , 106, 843-851	2.1	38	
202	Energetics, proton transfer rates, and kinetic isotope effects in bent hydrogen bonds. <i>Journal of the American Chemical Society</i> , 1992 , 114, 5849-5856	16.4	38	
201	Comparison between Tetrel Bonded Complexes Stabilized by [and [Hole Interactions. <i>Molecules</i> , 2018 , 23,	4.8	36	
200	Regium bonds between M clusters (M = Cu, Ag, Au and n = 2-6) and nucleophiles NH and HCN. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 22498-22509	3.6	36	
199	Identification of spectroscopic patterns of CHO H-bonds in proteins. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 10421-7	3.4	36	
198	Analysis of the reactivities of protein C-H bonds to H atom abstraction by OH radical. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16450-9	16.4	35	

197	SIIIChalcogen Bonds between SF2 or SF4 and C-C Multiple Bonds. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 5889-97	2.8	34
196	Excited State Intramolecular Proton Transfer in Anionic Analogues of Malonaldehyde. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 5901-5909	2.8	34
195	Analysis of the principles governing proton-transfer reactions. Carboxyl group. <i>Journal of the American Chemical Society</i> , 1986 , 108, 7178-7186	16.4	34
194	Ab Initio investigation of the structure of hydrogen halide-amine complexes in the gas phase and in a polarizable medium. <i>International Journal of Quantum Chemistry</i> , 1987 , 32, 47-56	2.1	34
193	Studies of dispersion energy in hydrogen-bonded systems. H2OHOH, H2OHF, H3NHF, HFHF. Journal of Chemical Physics, 1984 , 80, 1535-1542	3.9	34
192	The S?N noncovalent interaction: Comparison with hydrogen and halogen bonds. <i>Chemical Physics Letters</i> , 2011 , 514, 36-39	2.5	33
191	Rules for BN-Substitution in BCNHullerenes. Separation of BN and C Domains. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 8630-8637	2.8	33
190	Effects of chemical substitution upon excited state proton transfer. Fluoroderivatives of salicylaldimine. <i>Chemical Physics</i> , 1999 , 246, 65-74	2.3	33
189	Ab initio study of He(1S)+Cl2(X 1ਊ,3ଢ) potential energy surfaces. <i>Journal of Chemical Physics</i> , 1994 , 101, 6800-6809	3.9	33
188	Effects of external ions on the dynamics of proton transfer across a hydrogen bond. <i>The Journal of Physical Chemistry</i> , 1985 , 89, 1835-1840		33
187	Complexing of the Ammonium Ion by Polyethers. Comparative Complexing Thermochemistry of Ammonium, Hydronium, and Alkali Cations. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 6445-6450		32
186	Extrapolation to the complete basis set limit for binding energies of noncovalent interactions. <i>Computational and Theoretical Chemistry</i> , 2012 , 998, 9-13	2	31
185	Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding. <i>Molecules</i> , 2018 , 23,	4.8	31
184	Substituent Effects on the Binding of Halides by Neutral and Dicationic Bis(triazolium) Receptors. Journal of Physical Chemistry A, 2015 , 119, 13064-73	2.8	30
183	Theoretical investigation of the dihydrogen bond linking MH2 with HCCRgF (M = Zn, Cd; Rg = Ar, Kr). Journal of Physical Chemistry A, 2005, 109, 11933-5	2.8	30
182	Calculation of barriers to proton transfer using multiconfiguration self-consistent-field methods. I. Effects of localization. <i>Journal of Chemical Physics</i> , 1992 , 97, 7507-7518	3.9	30
181	Complexes containing CO2 and SO2. Mixed dimers, trimers and tetramers. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 5142-9	3.6	29
180	Ab initio study of the structure of guanine-cytosine base pair conformers in gas phase and polar solvents. <i>Molecular Physics</i> , 1995 , 84, 469-480	1.7	29

(2018-2016)

179	Catalysis of the Aza-Diels-Alder Reaction by Hydrogen and Halogen Bonds. <i>Journal of Organic Chemistry</i> , 2016 , 81, 2589-97	4.2	28	
178	Factors contributing to distortion energies of bent hydrogen bonds. Implications for proton-transfer potentials. <i>The Journal of Physical Chemistry</i> , 1989 , 93, 6565-6574		28	
177	Vibrational frequencies and intensities of H-bonded systems. 1:1 and 1:2 complexes of NH3 and PH3 with HF. <i>Journal of Chemical Physics</i> , 1987 , 87, 2214-2224	3.9	28	
176	Molecular orbital study of proton transfer in (H3NHOH2)+. <i>The Journal of Physical Chemistry</i> , 1983 , 87, 1145-1153		28	
175	Proton transfers in hydrogen-bonded systems. VI. Electronic redistributions in (N2H7)+ and (O2H5)+. <i>Journal of Chemical Physics</i> , 1981 , 75, 5791-5801	3.9	28	
174	Competitive Halide Binding by Halogen Versus Hydrogen Bonding: Bis-triazole Pyridinium. <i>Chemistry - A European Journal</i> , 2015 , 21, 13330-5	4.8	27	
173	Structure, Stability, and Bonding of BC2N: An ab Initio Study. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 10134-10141	2.8	27	
172	Hardness and Chemical Potential Profiles for Some Open-Shell HAB -lHBA Type Reactions. Ab Initio and Density Functional Study. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 5967-5973	2.8	27	
171	Calculating the Properties of Hydrogen Bonds by ab Initio Methods. <i>Reviews in Computational Chemistry</i> ,165-218		27	
170	Forty years of progress in the study of the hydrogen bond. Structural Chemistry, 2019, 30, 1119-1128	1.8	26	
169	The strength with which a peptide group can form a hydrogen bond varies with the internal conformation of the polypeptide chain. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 11312-7	3.4	26	
168	Ability of IR and NMR Spectral Data to Distinguish between a Tetrel Bond and a Hydrogen Bond. Journal of Physical Chemistry A, 2018 , 122, 7852-7862	2.8	26	
167	Inter- and Intramolecular Hydrogen Bonds with Transition Metal Atoms in Metallocenes of the Iron Subgroup. <i>Organometallics</i> , 1998 , 17, 4362-4367	3.8	25	
166	Variational transition state theory calculation of proton transfer dynamics in (H3CHCH3) <i>The Journal of Physical Chemistry</i> , 1993 , 97, 1765-1769		25	
165	Correlation between interaction energy and shift of the carbonyl stretching frequency. <i>Chemical Physics Letters</i> , 1990 , 174, 179-184	2.5	25	
164	Factors influencing proton positions in biomolecules. <i>International Journal of Quantum Chemistry</i> , 1986 , 29, 817-827	2.1	25	
163	Kinetics of proton transfer in (H3CHCH3) <i>The Journal of Physical Chemistry</i> , 1987 , 91, 724-730		25	
162	Aerogen bonds formed between AeOF (Ae = Kr, Xe) and diazines: comparisons between Ehole and Ehole complexes. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4676-4687	3.6	24	

161	Substitution Patterns in Mono-BN-Fullerenes:□Cn(n= 20, 24, 28, 32, 36, and 40). <i>Journal of Physical Chemistry A</i> , 2004 , 108, 7681-7685	2.8	24
160	Comparison of proton transfers in (S2H5)+ and (O2H5)+. Journal of Chemical Physics, 1985, 82, 3316-332	2 3 .9	24
159	Tuning the Competition between Hydrogen and Tetrel Bonds by a Magnesium Bond. <i>ChemPhysChem</i> , 2020 , 21, 212-219	3.2	24
158	Carbene triel bonds between TrR3 (Tr = B, Al) and N-heterocyclic carbenes. <i>International Journal of Quantum Chemistry</i> , 2019 , 119, e25867	2.1	24
157	Origins and properties of the tetrel bond. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 5702-5717	3.6	24
156	Crystallographic and Computational Characterization of Methyl Tetrel Bonding in S-Adenosylmethionine-Dependent Methyltransferases. <i>Molecules</i> , 2018 , 23,	4.8	24
155	On the ability of pnicogen atoms to engage in both and thole complexes. Heterodimers of ZFCH (Z = P, As, Sb, Bi) and NH. <i>Journal of Molecular Modeling</i> , 2019 , 25, 152	2	23
154	Theoretical Studies of IR and NMR Spectral Changes Induced by Sigma-Hole Hydrogen, Halogen, Chalcogen, Pnicogen, and Tetrel Bonds in a Model Protein Environment. <i>Molecules</i> , 2019 , 24,	4.8	23
153	Comparison between proton transfers involving carbonyl and hydroxyl oxygens. <i>The Journal of Physical Chemistry</i> , 1985 , 89, 3053-3060		23
152	Effects of Halogen, Chalcogen, Pnicogen, and Tetrel Bonds on IR and NMR Spectra. <i>Molecules</i> , 2019 , 24,	4.8	22
151	Actinyls in Expanded Porphyrin: A Relativistic Density-Functional Study <i>Journal of Physical Chemistry A</i> , 2004 , 108, 3056-3063	2.8	22
150	Transfer of a Proton between N Atoms in Excited Electronic States of 1,5-Diaza-1,3-pentadiene. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 9854-9861		22
149	Ground and excited state intramolecular proton transfer in OCCNN ring. <i>Chemical Physics Letters</i> , 1993 , 204, 36-44	2.5	22
148	Energetics of proton transfer between carbon atoms (H3CH? CH3)[International Journal of Quantum Chemistry, 1986, 29, 285-292	2.1	22
147	Understanding noncovalent bonds and their controlling forces. <i>Journal of Chemical Physics</i> , 2020 , 153, 140901	3.9	22
146	Assessment of the Presence and Strength of H-Bonds by Means of Corrected NMR. <i>Molecules</i> , 2016 , 21,	4.8	22
145	Anion???Anion Attraction in Complexes of MCl (M=Zn, Cd, Hg) with CN. ChemPhysChem, 2020, 21, 1119-	131.25	22
144	Dual Geometry Schemes in Tetrel Bonds: Complexes between TFI(T = Si, Ge, Sn) and Pyridine Derivatives. <i>Molecules</i> , 2019 , 24,	4.8	21

143	Comparison of methods for calculating the properties of intramolecular hydrogen bonds. Excited state proton transfer. <i>Journal of Chemical Physics</i> , 1999 , 111, 849-858	3.9	21
142	Switchable Aromaticity in an Isostructural Mn Phthalocyanine Series Isolated in Five Separate Redox States. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2604-2613	16.4	20
141	Differential Binding of Tetrel-Bonding Bipodal Receptors to Monatomic and Polyatomic Anions. <i>Molecules</i> , 2019 , 24,	4.8	20
140	Comparison of Various Means of Evaluating Molecular Electrostatic Potentials for Noncovalent Interactions. <i>Journal of Computational Chemistry</i> , 2018 , 39, 500-510	3.5	20
139	Anionic CH???X- hydrogen bonds: origin of their strength, geometry, and other properties. <i>Chemistry - A European Journal</i> , 2015 , 21, 1474-81	4.8	20
138	Quantum chemical analysis of the energetics of the anti and gauche conformers of ethanol. <i>Structural Chemistry</i> , 2009 , 20, 43-48	1.8	20
137	Proton transfers between first- and second-row atoms: (H2OHSH2)+ and (H3NHSH2)+. <i>Journal of Chemical Physics</i> , 1984 , 80, 1982-1987	3.9	20
136	How Many Pnicogen Bonds can be Formed to a Central Atom Simultaneously?. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 2046-2056	2.8	19
135	Comparison of BN and AlN Substitution on the Structure and Electronic and Chemical Properties of C60 Fullerene. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 4056-4065	2.8	19
134	Ab initio study of FHBH3 and ClHBH3 including the effects of electron correlation. <i>Journal of Chemical Physics</i> , 1984 , 81, 2713-2716	3.9	19
133	Proton transfers in hydrogen bonded systems. Electron correlation effects in (H3NHOH2)+. <i>Chemical Physics Letters</i> , 1981 , 79, 39-42	2.5	19
132	Hexacoordinated Tetrel-Bonded Complexes between TF (T=Si, Ge, Sn, Pb) and NCH: Competition between 🛘 and 🖽 oles. <i>ChemPhysChem</i> , 2019 , 20, 959-966	3.2	19
131	Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid-base interactions. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 3850-66	3.6	18
130	Long-range behavior of noncovalent bonds. Neutral and charged H-bonds, pnicogen, chalcogen, and halogen bonds. <i>Chemical Physics</i> , 2015 , 456, 34-40	2.3	18
129	On the Stability of Interactions between Pairs of Anions - Complexes of MCl (M=Be, Mg, Ca, Sr, Ba) with Pyridine and CN. <i>ChemPhysChem</i> , 2020 , 21, 870-877	3.2	18
128	Manipulating unconventional CH-based hydrogen bonding in a methyltransferase via noncanonical amino acid mutagenesis. <i>ACS Chemical Biology</i> , 2014 , 9, 1692-7	4.9	18
127	Variation of atomic charges during proton transfer in hydrogen bonds. <i>Journal of Computational Chemistry</i> , 1994 , 15, 553-560	3.5	18
126	Effect of bond multiplicity upon hydrogen bonding and proton transfers. Double bonded atoms. Journal of the American Chemical Society, 1992 , 114, 3650-3655	16.4	18

125	Triel-Bonded Complexes between TrR (Tr=B, Al, Ga; R=H, F, Cl, Br, CH) and Pyrazine. <i>ChemPhysChem</i> , 2018 , 19, 3122-3133	3.2	18
124	Influence of monomer deformation on the competition between two types of Eholes in tetrel bonds. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 10336-10346	3.6	17
123	Pnicogen Bonds Pairing Anionic Lewis Acid with Neutral and Anionic Bases. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 4998-5006	2.8	17
122	Interpretation of Spectroscopic Markers of Hydrogen Bonds. <i>ChemPhysChem</i> , 2016 , 17, 2263-71	3.2	17
121	Proton Transfer in Ground and Excited Electronic States of Glyoxal Monohydrazone. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 7352-7359		17
120	Influence of basis set on the calculated properties of (H3N⊞Cl). <i>Journal of Chemical Physics</i> , 1985 , 82, 4131-4134	3.9	17
119	Contribution of dispersion to the properties of H2SHF and H2SHCl. <i>Journal of Chemical Physics</i> , 1985 , 83, 1778-1783	3.9	17
118	Analysis of the principles governing proton-transfer reactions. Comparison of the imine and amine groups. <i>Journal of the American Chemical Society</i> , 1985 , 107, 7690-7696	16.4	17
117	The ditetrel bond: noncovalent bond between neutral tetrel atoms. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 16606-16614	3.6	16
116	Competition between Intra and Intermolecular Triel Bonds. Complexes between Naphthalene Derivatives and Neutral or Anionic Lewis Bases. <i>Molecules</i> , 2020 , 25,	4.8	16
115	Effect of CHIIIO hydrogen bond length on the geometric and spectroscopic features of the peptide unit of proteins. <i>International Journal of Quantum Chemistry</i> , 2010 , 110, 2775-2783	2.1	16
114	Effect of nonproximate atomic substitution on excited state intramolecular proton transfer. Journal of Computational Chemistry, 1998, 19, 129-138	3.5	16
113	Calculation of barriers to proton transfer using variations of multiconfiguration self-consistent-field methods. II. Configuration interaction. <i>Journal of Chemical Physics</i> , 1992 , 97, 7519-	7 32 7	16
112	Chalcogen bonding of two ligands to hypervalent YF (Y = S, Se, Te, Po). <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 20829-20839	3.6	15
111	The interplay between charge transfer, rehybridization, and atomic charges in the internal geometry of subunits in noncovalent interactions. <i>International Journal of Quantum Chemistry</i> , 2015 , 115, 28-33	2.1	15
110	Building a Better Halide Receptor: Optimum Choice of Spacer, Binding Unit, and Halosubstitution. <i>ChemPhysChem</i> , 2016 , 17, 836-44	3.2	15
109	Halogen Bonds Formed between Substituted Imidazoliums and N Bases of Varying N-Hybridization. <i>Molecules</i> , 2017 , 22,	4.8	15
108	Dissection of the Factors Affecting Formation of a CHD H-Bond. A Case Study. <i>Crystals</i> , 2015 , 5, 327-34.	52.3	15

Unconventional H-bonds: SHIIIN interaction. International Journal of Quantum Chemistry, 2011, 111, 3196-3200 15 107 Analysis of catalytic mechanism of serine proteases. Viability of the ring-flip hypothesis. Journal of 106 3.4 15 Physical Chemistry B, 2008, 112, 6837-46 Noncovalent Bonds between Tetrel Atoms. ChemPhysChem, 2020, 21, 1934-1944 105 3.2 15 On the capability of metalfialogen groups to participate in halogen bonds. CrystEngComm, 2019, 104 3.3 14 21, 2875-2883 NXY halogen bonds. Comparison with NHY H-bonds and CXY halogen bonds. Physical Chemistry 103 3.6 14 Chemical Physics, 2016, 18, 18015-23 Three-dimensional spatial characteristics of primary and secondary basis set superposition error. 102 2.5 14 Chemical Physics Letters, 1987, 140, 338-344 Relationship between the angular characteristics of a hydrogen bond and the energetics of proton 101 14 3.4 transfer occurring within. Journal of Molecular Structure, 1988, 177, 79-91 Hydrogen bonding of the carbonyl groups of uridine nucleosides. Biopolymers, 1983, 22, 731-745 100 2.2 14 Structures and energetics of clusters surrounding diatomic anions stabilized by hydrogen, halogen, 2.3 99 14 and other noncovalent bonds. *Chemical Physics*, **2020**, 530, 110590 Torsional and Electronic Factors Control the C-H???O Interaction. Chemistry - A European Journal, 98 4.8 14 2016, 22, 16513-16521 Comparison of Ehole and Ehole tetrel bonds in complexes of borazine with TH3F and F2TO/H2TO 97 2.1 14 (T = C, Si, Ge). International Journal of Quantum Chemistry, 2019, 119, e25910 Dependence of NMR chemical shifts upon CH bond lengths of a methyl group involved in a tetrel 96 2.5 14 bond. Chemical Physics Letters, 2019, 714, 61-64 B?N Bond Cleavage and BN Ring Expansion at the Surface of Boron Nitride Nanotubes by 3.8 95 13 Iminoborane. Journal of Physical Chemistry C, 2015, 119, 3253-3259 Contributions of various noncovalent bonds to the interaction between an amide and S-containing 94 3.2 13 molecules. ChemPhysChem, 2012, 13, 3535-41 Nature of interactions in open-shell complexes pairing H2X with HXX, X=S,O. Molecular Physics, 93 1.7 13 **2009**, 107, 713-719 Comparison between Hydrogen and Halogen Bonds in Complexes of 6-OX-Fulvene with Pnicogen 92 3.2 12 and Chalcogen Electron Donors. ChemPhysChem, 2019, 20, 1978-1984 Structures of clusters surrounding ions stabilized by hydrogen, halogen, chalcogen, and pnicogen 91 2.3 12 bonds. Chemical Physics, 2019, 524, 55-62 Substituent Effects upon Protonation-Induced Red Shift of Phenyl Pyridine Copolymers. Journal of 90 3.4 12 Physical Chemistry B, **2002**, 106, 534-539

89	Modeling of coupled proton transfers by analytic functions. <i>International Journal of Quantum Chemistry</i> , 1992 , 44, 109-124	2.1	12
88	Role of d functions in ab initio calculation of the equilibrium structure of H2SHF. <i>Journal of Chemical Physics</i> , 1983 , 78, 599-600	3.9	12
87	The Hydrogen Bond: A Hundred Years and Counting. <i>Journal of the Indian Institute of Science</i> , 2020 , 100, 61-76	2.4	12
86	Computational Insights into Mg-Cl Complex Electrolytes for Rechargeable Magnesium Batteries. <i>Batteries and Supercaps</i> , 2019 , 2, 792-800	5.6	11
85	Anion-anion and anion-neutral triel bonds. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 4818-4828	3.6	11
84	Hydrogen bonded and stacked geometries of the temozolomide dimer. <i>Journal of Molecular Modeling</i> , 2016 , 22, 77	2	10
83	Violation of Electrostatic Rules: Shifting the Balance between Pnicogen Bonds and Lone Pair-□ Interactions Tuned by Substituents. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 7288-7295	2.8	10
82	Evaluation of DFT methods to study reactions of benzene with OH radical. <i>International Journal of Quantum Chemistry</i> , 2012 , 112, 1879-1886	2.1	10
81	INFLUENCE OF ISOTOPIC SUBSTITUTION ON STRENGTH OF HYDROGEN BONDS OF COMMON ORGANIC GROUPS. <i>Journal of Physical Organic Chemistry</i> , 1997 , 10, 383-395	2.1	10
80	The basis set dependence of structures and energies of various states of cyclodisiloxane. <i>International Journal of Quantum Chemistry</i> , 1986 , 29, 1191-1208	2.1	10
79	Relationships between Bond Strength and Spectroscopic Quantities in H-Bonds and Related Halogen, Chalcogen, and Pnicogen Bonds. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 7716-7725	2.8	10
78	Crystallographic and Theoretical Evidences of Anion???Anion Interaction. ChemPhysChem, 2021, 22, 818-	-8.21	10
77	Computational approaches and sigma-hole interactions: general discussion. <i>Faraday Discussions</i> , 2017 ,	3.6	9
76	Water-Mediated Carbon-Oxygen Hydrogen Bonding Facilitates S-Adenosylmethionine Recognition in the Reactivation Domain of Cobalamin-Dependent Methionine Synthase. <i>Biochemistry</i> , 2018 , 57, 3733	³ 3 ² 740	9
75	Regioselectivity of the interaction of temozolomide with borane and boron trifluoride. <i>Structural Chemistry</i> , 2015 , 26, 1359-1365	1.8	9
74	Search for Analytical Functions To Simulate Proton Transfers in Hydrogen Bonds. <i>ACS Symposium Series</i> , 1994 , 125-138	0.4	9
73	Calculation of barriers to proton transfer using a variety of electron correlation methods. <i>International Journal of Quantum Chemistry</i> , 1992 , 44, 817-835	2.1	9
72	Effects of alkylation upon the proton affinities of nitrogen and oxygen bases. <i>Journal of Computational Chemistry</i> , 1985 , 6, 168-172	3.5	9

(2021-2020)

71	F-Halogen Bond: Conditions for Its Existence. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 7290-7299	2.8	9
70	Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons. <i>Molecules</i> , 2021 , 26,	4.8	9
69	Enhancing the Reduction Potential of Quinones via Complex Formation. <i>Journal of Organic Chemistry</i> , 2016 , 81, 4316-24	4.2	9
68	STRUCTURE AND PROPERTIES OF PERFLUOROALKYLATED PHTHALOCYANINES: A THEORETICAL STUDY. <i>Journal of Theoretical and Computational Chemistry</i> , 2008 , 07, 541-563	1.8	8
67	A DFT/TDDFT study of Group 4A metal porphyrins. <i>Molecular Physics</i> , 2003 , 101, 1227-1238	1.7	8
66	Effects of external ions upon proton transfer reactions: H-bonded systems containing HCOOH. <i>International Journal of Quantum Chemistry</i> , 1988 , 34, 137-147	2.1	8
65	Energetics and electronic rearrangements of proton transfer in (H3NHOH2)+. <i>International Journal of Quantum Chemistry</i> , 1983 , 23, 753-764	2.1	8
64	Comparison of Bifurcated Halogen with Hydrogen Bonds. <i>Molecules</i> , 2021 , 26,	4.8	8
63	Optical Stability of 1,1@Binaphthyl Derivatives. ACS Omega, 2019, 4, 6044-6049	3.9	7
62	Structure and Properties of [8]BN-Circulenes: Inorganic Analogues of [8]Circulenes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 15541-15546	3.8	7
61	Effect of Magnesium Bond on the Competition Between Hydrogen and Halogen Bonds and the Induction of Proton and Halogen Transfer. <i>ChemPhysChem</i> , 2018 , 19, 1456-1464	3.2	7
60	The ability of a tetrel bond to transition a neutral amino acid into a zwitterion. <i>Chemical Physics Letters</i> , 2019 , 731, 136584	2.5	7
59	An exploration of the ozone dimer potential energy surface. Journal of Chemical Physics, 2014, 140, 244	3319	7
58	Behavior of interaction energy and intramolecular bond stretch in linear and bifurcated hydrogen bonds. <i>International Journal of Quantum Chemistry</i> , 1993 , 48, 181-190	2.1	7
57	Comparison of ground and triplet state geometries of malonaldehyde. <i>International Journal of Quantum Chemistry</i> , 1993 , 48, 419-429	2.1	7
56	Interactions of Nucleic Acid Bases with Temozolomide. Stacked, Perpendicular, and Coplanar Heterodimers. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 9347-61	3.4	7
55	Experimental and Theoretical Studies of Dimers Stabilized by Two Chalcogen Bonds in the Presence of a NIIIN Pnicogen Bond. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 657-668	2.8	7
54	Weak EHole Triel Bond between C H Tr (Tr=B, Al, Ga) and Haloethyne: Substituent and Cooperativity Effects. <i>ChemPhysChem</i> , 2021 , 22, 481-487	3.2	7

53	Coordination of a Central Atom by Multiple Intramolecular Pnicogen Bonds. <i>Inorganic Chemistry</i> , 2020 , 59, 9315-9324	5.1	6
52	Interactions between temozolomide and quercetin. Structural Chemistry, 2016, 27, 1577-1588	1.8	6
51	Modeling proton transfer potentials in angularly deformed hydrogen bonds. <i>International Journal of Quantum Chemistry</i> , 1993 , 48, 77-87	2.1	6
50	Competition between a Tetrel and Halogen Bond to a Common Lewis Acid. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 308-316	2.8	6
49	Anion-Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. <i>Molecules</i> , 2021 , 26,	4.8	6
48	H-bonding and stacking interactions between chloroquine and temozolomide. <i>International Journal of Quantum Chemistry</i> , 2016 , 116, 1196-1204	2.1	6
47	Relative Strengths of a Pnicogen and a Tetrel Bond and Their Mutual Effects upon One Another. Journal of Physical Chemistry A, 2021 , 125, 2631-2641	2.8	6
46	Anionanion (MX) dimers (M = Zn, Cd, Hg; X = Cl, Br, I) in different environments. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 13853-13861	3.6	6
45	Does Thermochemical Mimicry Extend to Gibbs Energies? The Differences of K+ and NH4+, and of Na+ and H3O+. <i>Structural Chemistry</i> , 1999 , 10, 391-392	1.8	5
44	Characterization of ground and excited electronic state deprotonation energies of systems containing double bonds using natural bond orbital analysis. <i>Journal of Chemical Physics</i> , 1996 , 105, 467	3 -469	1 ⁵
43	Dissection of basis set superposition error at SCF and correlated levels: HF dimer. <i>Computational and Theoretical Chemistry</i> , 1989 , 199, 9-22		5
42	Proximity Effects of Substituents on Halogen Bond Strength. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 5069-5077	2.8	5
41	Carbon as an electron donor atom. <i>Polyhedron</i> , 2021 , 193, 114905	2.7	5
40	Dissection of the Origin of EHoles and the Noncovalent Bonds in Which They Engage. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 6514-6528	2.8	5
39	Interactions between Thiourea and Imines. Prelude to Catalysis. <i>Journal of Organic Chemistry</i> , 2015 , 80, 10334-41	4.2	4
38	Microsolvation of anions by molecules forming CHIIXIhydrogen bonds. Chemical Physics, 2015, 463, 137-	12434	4
37	Complexes of HArF and AuX (X = F, Cl, Br, I). Comparison of H-bonds, halogen bonds, F-shared bonds and covalent bonds. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5891	3.1	4
36	Xechalcogen aerogen bond. Effect of substituents and size of chalcogen atom. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 4115-4121	3.6	4

(2016-1995)

35	Proton transfer in H5O and H3O with an external restraining force. <i>International Journal of Quantum Chemistry</i> , 1995 , 56, 567-575	2.1	4
34	On the Ability of Nitrogen to Serve as an Electron Acceptor in a Pnicogen Bond. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 10419-10427	2.8	4
33	Effect of carbon hybridization in C-F bond as an electron donor in triel bonds. <i>Journal of Chemical Physics</i> , 2020 , 153, 074304	3.9	4
32	Diboron Bonds Between BX (X=H, F, CH) and BYZ (Y=H, F; Z=CO, N , CNH). <i>ChemPhysChem</i> , 2021 , 22, 1461-1469	3.2	4
31	The heat capacities and standard entropies of corresponding potassium and ammonium ion species: is there a constant difference?. <i>Structural Chemistry</i> , 2009 , 20, 31-35	1.8	3
30	Proton transfers in hydrogen-bonded systems V. Analysis of electronic redistributions in (N2H7)+. <i>International Journal of Quantum Chemistry</i> , 1981 , 20, 221-229	2.1	3
29	Ability of Lewis Acids with Shallow Holes to Engage in Chalcogen Bonds in Different Environments. <i>Molecules</i> , 2021 , 26,	4.8	3
28	Unusual substituent effects in the Tr III re triel bond. <i>International Journal of Quantum Chemistry</i> , 2021 , 121, e26526	2.1	3
27	Enhancement of the Tetrel Bond by the Effects of Substituents, Cooperativity, and Electric Field: Transition from Noncovalent to Covalent Bond. <i>ChemPhysChem</i> , 2021 , 22, 2305-2312	3.2	3
26	The halogen bond in solution: general discussion. Faraday Discussions, 2017, 203,	3.6	2
25	Applicability of the Marcus equation to proton transfer in symmetric and unsymmetric systems. <i>Computational and Theoretical Chemistry</i> , 1993 , 285, 27-32		2
24	Versatility of the Cyano Group in Intermolecular Interactions. <i>Molecules</i> , 2020 , 25,	4.8	2
23	Competition between Inter and Intramolecular Tetrel Bonds: Theoretical Studies Complemented by CSD Survey. <i>ChemPhysChem</i> , 2021 , 22, 924-934	3.2	2
22	Probing the Hydrogen-Bonding Environment of Individual Bases in DNA Duplexes with Isotope-Edited Infrared Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 7613-7627	3.4	2
21	Participation of S and Se in hydrogen and chalcogen bonds. CrystEngComm,	3.3	2
20	Noncovalent bond between tetrel Ehole and hydride. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 10!	53 6 :đ0	54 <u>≉</u>
19	Characterization of Type I and II Interactions between Halogen Atoms. <i>Crystal Growth and Design</i> , 2022 , 22, 2692-2702	3.5	2
18	Effects of Angular Deformation on the Energetics of the SN2 Reaction. <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 3964-3968	3.2	1

17	Comparison of halogen with proton transfer. Symmetric and asymmetric systems. <i>Chemical Physics Letters</i> , 2019 , 731, 136593	2.5	1
16	Monitoring the Charge Distribution during Proton and Sodium Ion Conduction along Chains of Water Molecules and Protein Residues. <i>Israel Journal of Chemistry</i> , 2017 , 57, 385-392	3.4	1
15	Ingredients Necessary for Proton Transfer in Enzymes. <i>Israel Journal of Chemistry</i> , 2009 , 49, 139-147	3.4	1
14	Experimental and theoretical evidence of attractive interactions between dianions: [PdCl]?[PdCl]. <i>Chemical Communications</i> , 2021 , 57, 13305-13308	5.8	1
13	Anatomy of Ehole bonds: Linear systems. <i>Journal of Chemical Physics</i> , 2021 , 155, 174302	3.9	1
12	Triel bonds within anionanion complexes. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 25097-25106	3.6	1
11	The balance between side-chain and backbone-driven association in folding of the Helical influenza A transmembrane peptide. <i>Journal of Computational Chemistry</i> , 2020 , 41, 2177-2188	3.5	1
10	Fabricating Flexible Packaging Batteries in General Chemistry Laboratories. <i>Journal of Chemical Education</i> , 2021 , 98, 2471-2475	2.4	1
9	Interactions of (MY)6 (M = Zn, Cd; Y = O, S, Se) quantum dots with N-bases. <i>Structural Chemistry</i> , 2019 , 30, 1003-1014	1.8	O
8	Perturbations of proton transfer potentials caused by polar molecules. <i>International Journal of Quantum Chemistry</i> , 2009 , 36, 211-217	2.1	O
7	Partial transfer of bridging atom in halogen-bonded complexes. <i>Computational and Theoretical Chemistry</i> , 2021 , 1204, 113398	2	О
6	Can HCCH/HBNH Break B?N/C?C Bonds of Single-Wall BN/Carbon Nanotubes at Their Surface?. Journal of Physical Chemistry C, 2017 , 121, 26044-26053	3.8	
5	Proton transfer potentials in hydrogen-bonded systems: (H5O2)+. <i>International Journal of Quantum Chemistry</i> , 2009 , 18, 199-206	2.1	
4	Additivity of the effects of external ions and dipoles upon the energetics of proton transfer. <i>International Journal of Quantum Chemistry</i> , 2009 , 30, 71-79	2.1	
3	Effect of proton transfer on neighboring hydrogen-bond strength. <i>International Journal of Quantum Chemistry</i> , 1991 , 40, 37-48	2.1	
2	Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of single-wall carbon nanotubes. <i>Journal of Computational Chemistry</i> , 2016 , 37, 1953-61	3.5	
1	Structural and Functional Characterization of Sulfonium Carbon-Oxygen Hydrogen Bonding in the Deoxyamino Sugar Methyltransferase TylM1. <i>Biochemistry</i> . 2019 . 58, 2152-2159	3.2	