Carlos M Ferrario

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7560268/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, 2002, 417, 822-828.	13.7	1,586
2	Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation, 2005, 111, 2605-2610.	1.6	1,390
3	Upregulation of Angiotensin-Converting Enzyme 2 After Myocardial Infarction by Blockade of Angiotensin II Receptors. Hypertension, 2004, 43, 970-976.	1.3	505
4	Role of the Renin-Angiotensin-Aldosterone System and Proinflammatory Mediators in Cardiovascular Disease. American Journal of Cardiology, 2006, 98, 121-128.	0.7	445
5	Counterregulatory Actions of Angiotensin-(1-7). Hypertension, 1997, 30, 535-541.	1.3	420
6	Management of High Blood Pressure in African Americans <subtitle>Consensus Statement of the Hypertension in African Americans Working Group of the International Society on Hypertension in Blacks</subtitle> . Archives of Internal Medicine, 2003, 163, 525.	4.3	393
7	Cardiovascular Effects of Angiotensin Mediated by the Central Nervous System. Circulation Research, 1972, 30, 257-262.	2.0	362
8	Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1–7) in regulation of cardiovascular function. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2281-H2290.	1.5	335
9	Angiotensin-(1-7) Dilates Canine Coronary Arteries Through Kinins and Nitric Oxide. Hypertension, 1996, 27, 523-528.	1.3	318
10	Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the mas receptor. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1560-H1566.	1.5	291
11	Targeting the Degradation of Angiotensin II With Recombinant Angiotensin-Converting Enzyme 2. Hypertension, 2010, 55, 90-98.	1.3	273
12	Metabolism of Angiotensin-(1–7) by Angiotensin-Converting Enzyme. Hypertension, 1998, 31, 362-367.	1.3	266
13	Inhibition of Early Atherogenesis by Losartan in Monkeys With Diet-Induced Hypercholesterolemia. Circulation, 2000, 101, 1586-1593.	1.6	265
14	Angiotensin-(1-7) Inhibits Vascular Smooth Muscle Cell Growth. Hypertension, 1996, 28, 104-108.	1.3	240
15	A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: Angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11. Life Sciences, 1993, 52, 1461-1480.	2.0	234
16	Angiotensin-(1–7) Augments Bradykinin-Induced Vasodilation by Competing With ACE and Releasing Nitric Oxide. Hypertension, 1997, 29, 394-398.	1.3	234
17	Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney International, 2005, 68, 2189-2196.	2.6	229
18	Distribution of Angiotensin-(1-7) and ACE2 in Human Placentas of Normal and Pathological Pregnancies. Placenta, 2006, 27, 200-207.	0.7	217

#	Article	IF	CITATIONS
19	Angiotensin-Converting Enzyme 2 and Angiotensin-(1-7). Hypertension, 2006, 47, 515-521.	1.3	217
20	Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Experimental Physiology, 2005, 90, 783-790.	0.9	214
21	Vasodepressor Actions of Angiotensin-(1–7) Unmasked During Combined Treatment With Lisinopril and Losartan. Hypertension, 1998, 31, 699-705.	1.3	213
22	Effects of captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension. Journal of Hypertension, 1996, 14, 799-805.	0.3	212
23	Angiotensin-(1–7) Contributes to the Antihypertensive Effects of Blockade of the Renin-Angiotensin System. Hypertension, 1998, 31, 356-361.	1.3	209
24	Regulation of ACE2 in cardiac myocytes and fibroblasts. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2373-H2379.	1.5	199
25	Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1–7) expression in the aorta of spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1013-H1019.	1.5	192
26	Angiotensin-(1-7) in Normal and Preeclamptic Pregnancy. Endocrine, 2002, 18, 239-246.	2.2	188
27	Role of Angiotensin II in Cardiovascular Disease — Therapeutic Implications of More Than a Century of Research. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2006, 7, 3-14.	1.0	188
28	Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-κB activation via NADPH oxidase. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E345-E351.	1.8	183
29	Cardiovascular actions of angiotensin(1–7). Peptides, 1993, 14, 679-684.	1.2	174
30	Converting Enzyme Determines Plasma Clearance of Angiotensin-(1–7). Hypertension, 1998, 32, 496-502.	1.3	172
31	Angiotensin-(1–7) Reduces Smooth Muscle Growth After Vascular Injury. Hypertension, 1999, 33, 207-211.	1.3	169
32	Distinct roles for ANG II and ANG-(1–7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. American Journal of Physiology - Cell Physiology, 2006, 290, C420-C426.	2.1	165
33	Hypertension-Related Morbidity and Mortality in the Southeastern United States. American Journal of the Medical Sciences, 1997, 313, 195-209.	0.4	153
34	Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E353-E359.	1.8	150
35	Angiotensin($1a \in 7$) in the spontaneously hypertensive rat. Peptides, 1993, 14, 883-891.	1.2	141
36	ACE2: more of Ang-(1–7) or less Ang II?. Current Opinion in Nephrology and Hypertension, 2011, 20, 1-6.	1.0	136

3

#	Article	IF	CITATIONS
37	Bovine Aortic Endothelial Cells Contain an Angiotensin-(1–7) Receptor. Hypertension, 1997, 29, 388-392.	1.3	131
38	Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. American Journal of Physiology - Renal Physiology, 2007, 292, F82-F91.	1.3	130
39	Enhanced Renal Immunocytochemical Expression of ANG-(1-7) and ACE2 During Pregnancy. Hypertension, 2003, 42, 749-753.	1.3	128
40	Antiproliferative Actions of Angiotensin-(1-7) in Vascular Smooth Muscle. Hypertension, 1999, 34, 950-957.	1.3	127
41	The ANG-(1–7)/ACE2/mas axis in the regulation of nephron function. American Journal of Physiology - Renal Physiology, 2010, 298, F1297-F1305.	1.3	126
42	Cardiac Angiotensin-(1-7) in Ischemic Cardiomyopathy. Circulation, 2003, 108, 2141-2146.	1.6	124
43	Angiotensin-(1-7) Inhibits Growth of Human Lung Adenocarcinoma Xenografts in Nude Mice through a Reduction in Cyclooxygenase-2. Cancer Research, 2007, 67, 2809-2815.	0.4	123
44	Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2166-H2172.	1.5	116
45	Renin-angiotensin system expression in rat bone marrow haematopoietic and stromal cells. British Journal of Haematology, 2004, 126, 120-126.	1.2	114
46	Angiotensin-(1–7): a bioactive fragment of the renin–angiotensin system. Regulatory Peptides, 1998, 78, 13-18.	1.9	111
47	Pathways for angiotensin-(1—7) metabolism in pulmonary and renal tissues. American Journal of Physiology - Renal Physiology, 2000, 279, F841-F850.	1.3	108
48	Chymase-Dependent Generation of Angiotensin II from Angiotensin-(1-12) in Human Atrial Tissue. PLoS ONE, 2011, 6, e28501.	1.1	107
49	Sex differences in circulating and renal angiotensins of hypertensive mRen().Lewis but not normotensive Lewis rats. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H10-H20.	1.5	104
50	Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E110-E116.	1.8	102
51	Angiotensin II-induced non-alcoholic fatty liver disease is mediated by oxidative stress in transgenic TG(mRen2)27(Ren2) rats. Journal of Hepatology, 2008, 49, 417-428.	1.8	101
52	Differential actions of renal ischemic injury on the intrarenal angiotensin system. American Journal of Physiology - Renal Physiology, 2000, 279, F636-F645.	1.3	100
53	NADPH Oxidase Contributes to Vascular Inflammation, Insulin Resistance, and Remodeling in the Transgenic (mRen2) Rat. Hypertension, 2007, 50, 384-391.	1.3	100
54	Angiotensinâ€(1â€7): Pharmacology and New Perspectives in Cardiovascular Treatments. Cardiovascular Drug Reviews, 2007, 25, 162-174.	4.4	100

#	Article	IF	CITATIONS
55	Oxidative stress and glomerular filtration barrier injury: role of the renin-angiotensin system in the Ren2 transgenic rat. American Journal of Physiology - Renal Physiology, 2006, 291, F1308-F1314.	1.3	99
56	Angiotensin-Converting Enzyme Expression in Human Carotid Artery Atherosclerosis. Hypertension, 2000, 35, 353-359.	1.3	97
57	ACE2: Angiotensin II/Angiotensin-(1–7) Balance in Cardiac and Renal Injury. Current Hypertension Reports, 2014, 16, 420.	1.5	97
58	Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2.Lewis rat. American Journal of Physiology - Renal Physiology, 2006, 290, F1497-F1506.	1.3	96
59	Mineralocorticoid Receptor Blockade Attenuates Chronic Overexpression of the Renin-Angiotensin-Aldosterone System Stimulation of Reduced Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Cardiac Remodeling. Endocrinology, 2007, 148, 3773-3780.	1.4	96
60	New Physiological Concepts of the Renin-Angiotensin System From the Investigation of Precursors and Products of Angiotensin I Metabolism. Hypertension, 2010, 55, 445-452.	1.3	96
61	Cardiac remodelling and RAS inhibition. Therapeutic Advances in Cardiovascular Disease, 2016, 10, 162-171.	1.0	96
62	Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacological Research, 2017, 125, 57-71.	3.1	96
63	Evidence that prolyl endopeptidase participates in the processing of brain angiotensin. Journal of Hypertension, 1991, 9, 631-638.	0.3	95
64	MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. American Journal of Physiology - Cell Physiology, 2008, 295, C1169-C1174.	2.1	93
65	Estrogen protects transgenic hypertensive rats by shifting the vasoconstrictor-vasodilator balance of RAS. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1908-R1915.	0.9	92
66	Attenuation of NADPH Oxidase Activation and Glomerular Filtration Barrier Remodeling With Statin Treatment. Hypertension, 2008, 51, 474-480.	1.3	90
67	Vasopeptidase inhibition and Ang-(1-7) in the spontaneously hypertensive rat. Kidney International, 2002, 62, 1349-1357.	2.6	89
68	Direct Renin Inhibition Improves Systemic Insulin Resistance and Skeletal Muscle Glucose Transport in a Transgenic Rodent Model of Tissue Renin Overexpression. Endocrinology, 2009, 150, 2561-2568.	1.4	87
69	ACE2 and ANG-(1-7) in the rat uterus during early and late gestation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R151-R161.	0.9	86
70	Angiotensin-(1-7) and Nitric Oxide Interaction in Renovascular Hypertension. Hypertension, 1995, 25, 796-802.	1.3	86
71	Hemodynamic Characteristics of Chronic Experimental Neurogenic Hypertension in Unanesthetized Dogs. Circulation Research, 1969, 24, 911-922.	2.0	85
72	Activation of Local Chorionic Villi Angiotensin II Levels But Not Angiotensin (1-7) in Preeclampsia. Hypertension, 2008, 51, 1066-1072.	1.3	85

#	Article	IF	CITATIONS
73	Contribution of Angiotensin-(1–7) to Blood Pressure Regulation in Salt-Depleted Hypertensive Rats. Hypertension, 2000, 36, 417-422.	1.3	84
74	Association of angiotensinogen m235t and a(-6)g gene polymorphisms with coronary heart disease with independence of essential hypertension: the procagene study. Journal of the American College of Cardiology, 2001, 37, 1536-1542.	1.2	84
75	Estrogen or the AT1 Antagonist Olmesartan Reverses the Development of Profound Hypertension in the Congenic mRen2.Lewis Rat. Hypertension, 2003, 42, 781-786.	1.3	84
76	Value of Noninvasive Hemodynamics to Achieve Blood Pressure Control in Hypertensive Subjects. Hypertension, 2006, 47, 771-777.	1.3	84
77	Angiotensin II-mediated oxidative stress promotes myocardial tissue remodeling in the transgenic (mRen2) 27 Ren2 rat. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E355-E363.	1.8	84
78	Reassessment of plasma angiotensins measurement: Effects of protease inhibitors and sample handling procedures. Peptides, 1991, 12, 1135-1141.	1.2	83
79	An evolving story of angiotensin-II-forming pathways in rodents and humans. Clinical Science, 2014, 126, 461-469.	1.8	82
80	Evidence That Prostaglandins Mediate the Antihypertensive Actions of Angiotensin-(1-7) During Chronic Blockade of the Renin-Angiotensin System. Journal of Cardiovascular Pharmacology, 2000, 36, 109-117.	0.8	82
81	Role of the vasodilator peptide angiotensin-(1-7) in cardiovascular drug therapy. Vascular Health and Risk Management, 2007, 3, 125-37.	1.0	82
82	Impaired Heart Rate Baroreflex in Older Rats. Hypertension, 2005, 46, 333-340.	1.3	81
83	Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circulation Research, 2018, 122, 319-336.	2.0	81
84	Angiotensin-(1-12) is an alternate substrate for angiotensin peptide production in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2242-H2247.	1.5	79
85	Effects of omapatrilat on the renin-angiotensin system in salt-sensitive hypertension. American Journal of Hypertension, 2002, 15, 557-564.	1.0	78
86	Increased Expression of Angiotensin Converting Enzyme 2 in Conjunction with Reduction of Neointima by Angiotensin II Type 1 Receptor Blockade. Hypertension Research, 2008, 31, 553-559.	1.5	78
87	Contribution of the vagus nerve to angiotensin II binding sites in the canine medulla. Brain Research Bulletin, 1986, 17, 497-505.	1.4	77
88	Angiotensin II acts at AT1receptors in the nucleus of the solitary tract to attenuate the baroreceptor reflex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R1611-R1619.	0.9	76
89	Novel Aspects of the Renal Renin-Angiotensin System: Angiotensin-(1-7),ACE2 and Blood Pressure Regulation. , 2004, 143, 77-89.		74
90	Temporal-spatial expression of ANG-(1-7) and angiotensin-converting enzyme 2 in the kidney of normal and hypertensive pregnant rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R169-R177.	0.9	74

#	Article	IF	CITATIONS
91	Losartan Inhibits Thromboxane A2-Induced Platelet Aggregation and Vascular Constriction in Spontaneously Hypertensive Rats. Journal of Cardiovascular Pharmacology, 1998, 32, 198-205.	0.8	74
92	Injections of angiotensinâ€converting enzyme 2 inhibitor MLN4760 into nucleus tractus solitarii reduce baroreceptor reflex sensitivity for heart rate control in rats. Experimental Physiology, 2008, 93, 694-700.	0.9	73
93	Role of Mineralocorticoid Receptor Antagonists in Cardiovascular Disease. Circulation Research, 2015, 116, 206-213.	2.0	73
94	Mechanisms linking angiotensin II and atherogenesis. Current Opinion in Lipidology, 2002, 13, 505-512.	1.2	71
95	Localization of the novel angiotensin peptide, angiotensin-(1-12), in heart and kidney of hypertensive and normotensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2614-H2618.	1.5	71
96	ACE and ACE2: their role to balance the expression of angiotensin II and angiotensin-(1–7). Kidney International, 2006, 70, 8-10.	2.6	70
97	Addressing the Global Cardiovascular Risk of Hypertension, Dyslipidemia, Diabetes Mellitus, and the Metabolic Syndrome in the Southeastern United States, Part II: Treatment Recommendations for Management of the Global Cardiovascular Risk of Hypertension, Dyslipidemia, Diabetes Mellitus, and the Metabolic Syndrome. American Iournal of the Medical Sciences. 2005. 329. 292-305.	0.4	69
98	New angiotensins. Journal of Molecular Medicine, 2008, 86, 663-671.	1.7	69
99	Renin Inhibition Attenuates Insulin Resistance, Oxidative Stress, and Pancreatic Remodeling in the Transgenic Ren2 Rat. Endocrinology, 2008, 149, 5643-5653.	1.4	69
100	Pathways of angiotensinâ€(1–7) metabolism in the kidney. Nephrology Dialysis Transplantation, 2001, 16, 22-26.	0.4	68
101	Opposing Actions of Angiotensin-(1-7) and Angiotensin II in the Brain of Transgenic Hypertensive Rats. Hypertension, 1995, 25, 1260-1265.	1.3	68
102	Rosuvastatin, a 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitor, Decreases Cardiac Oxidative Stress and Remodeling in Ren2 Transgenic Rats. Endocrinology, 2007, 148, 2181-2188.	1.4	67
103	Differential regulation of angiotensin-(1-12) in plasma and cardiac tissue in response to bilateral nephrectomy. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1184-H1192.	1.5	66
104	Sexual Dysfunction in Patients With Hypertension: Implications for Therapy. Journal of Clinical Hypertension, 2002, 4, 424-432.	1.0	64
105	Allelic Variants of the Human Scavenger Receptor Class B Type 1 and Paraoxonase 1 on Coronary Heart Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 854-860.	1.1	64
106	Diabetes, Hypertension, and Dyslipidemia in Mexican Americans and Non-Hispanic Whites. American Journal of Preventive Medicine, 2006, 30, 103-110.	1.6	63
107	Pressor and Reflex Sensitivity Is Altered in Spontaneously Hypertensive Rats Treated With Angiotensin-(1-7). Hypertension, 1995, 26, 1138-1144.	1.3	63
108	Inhibition of platelet aggregability by losartan in essential hypertension. American Journal of Cardiology, 2000, 86, 1188-1192.	0.7	62

#	Article	IF	CITATIONS
109	Chymase mediates angiotensin-(1-12) metabolism in normal human hearts. Journal of the American Society of Hypertension, 2013, 7, 128-136.	2.3	61
110	Effects of angiotensin analogues and angiotensin receptor antagonists on paraventricular neurones. Regulatory Peptides, 1992, 38, 111-120.	1.9	60
111	Effects of chronic hormone replacement on the renin–angiotensin system in cynomolgus monkeys. Journal of Hypertension, 1997, 15, 719-726.	0.3	60
112	Release of Angiotensin-(1-7) From the Rat Hindlimb. Hypertension, 2000, 35, 348-352.	1.3	59
113	Omapatrilat Versus Lisinopril. Hypertension, 2001, 38, 1342-1348.	1.3	59
114	Urinary Vasodilator and Vasoconstrictor Angiotensins During Menstrual Cycle, Pregnancy, and Lactation. Endocrine, 2001, 16, 117-122.	2.2	59
115	Inhibition of Angiotensin-Converting Enzyme 2 Exacerbates Cardiac Hypertrophy and Fibrosis in Ren-2 Hypertensive Rats. American Journal of Hypertension, 2010, 23, 687-693.	1.0	58
116	Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H404-H414.	1.5	58
117	Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: A sex-specific gene profiling analysis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1870-1882.	1.8	58
118	Growth, metabolism, and blood pressure disturbances during aging in transgenic rats with altered brain renin-angiotensin systems. Physiological Genomics, 2005, 23, 311-317.	1.0	56
119	Distinct roles for angiotensinâ€converting enzyme 2 and carboxypeptidase A in the processing of angiotensins within the murine heart. Experimental Physiology, 2008, 93, 613-621.	0.9	56
120	Oxidative Stress-Mediated Mitochondrial Dysfunction Contributes to Angiotensin II-Induced Nonalcoholic Fatty Liver Disease in Transgenic Ren2 Rats. American Journal of Pathology, 2009, 174, 1329-1337.	1.9	56
121	Nebivolol Reduces Proteinuria and Renal NADPH Oxidase-Generated Reactive Oxygen Species in the Transgenic Ren2 Rat. American Journal of Nephrology, 2009, 30, 354-360.	1.4	55
122	Angiotensin-(1-12): A Chymase-Mediated Cellular Angiotensin II Substrate. Current Hypertension Reports, 2014, 16, 429.	1.5	55
123	Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1–7) in transgenic Ren-2 hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H3019-H3024.	1.5	54
124	Advances in the Renin Angiotensin System. Advances in Pharmacology, 2010, 59, 197-233.	1.2	54
125	Reversal of vascular hypertrophy in hypertensive patients through blockade of angiotensin II receptors. Journal of the American Society of Hypertension, 2008, 2, 165-172.	2.3	53
126	Use of angiotensin II receptor blockers in animal models of atherosclerosis. American Journal of Hypertension, 2002, 15, S9-S13.	1.0	52

#	Article	IF	CITATIONS
127	Beneficial versus harmful effects of Angiotensin (1-7) on impulse propagation and cardiac arrhythmias in the failing heart. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2007, 8, 74-80.	1.0	51
128	Effect of renin inhibition and AT ₁ R blockade on myocardial remodeling in the transgenic Ren2 rat. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E103-E109.	1.8	50
129	Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2341-H2351.	1.5	50
130	Uptake and Metabolism of the Novel Peptide Angiotensin-(1-12) by Neonatal Cardiac Myocytes. PLoS ONE, 2011, 6, e15759.	1.1	50
131	Angiotensin-(1-7) and Baroreflex Function in Nucleus Tractus Solitarii of (mRen2)27 Transgenic Rats. Journal of Cardiovascular Pharmacology, 2008, 51, 542-548.	0.8	49
132	Hemodynamic and Hormonal Changes to Dual Renin–Angiotensin System Inhibition in Experimental Hypertension. Hypertension, 2013, 61, 417-424.	1.3	49
133	Role of area postrema pressor mechanisms in the regulation of arterial pressure. Canadian Journal of Physiology and Pharmacology, 1987, 65, 1591-1597.	0.7	48
134	Blood Pressure–Independent Attenuation of Cardiac Hypertrophy by AT 1 R-AS Gene Therapy. Hypertension, 2002, 39, 969-975.	1.3	48
135	Contribution of angiotensin-(1-7) to cardiovascular physiology and pathology. Current Hypertension Reports, 2003, 5, 129-134.	1.5	48
136	Influence of Gender and Genetic Variability on Plasma Angiotensin Peptides. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2006, 7, 92-97.	1.0	47
137	Pregnancy Enhances the Angiotensin (Ang)-(1–7) Vasodilator Response in Mesenteric Arteries and Increases the Renal Concentration and Urinary Excretion of Ang-(1–7). Endocrinology, 2003, 144, 3338-3343.	1.4	46
138	Addressing the Global Cardiovascular Risk of Hypertension, Dyslipidemia, and Insulin Resistance in the Southeastern United States. American Journal of the Medical Sciences, 2005, 329, 276-291.	0.4	45
139	Mineralocorticoid receptor antagonism attenuates glomerular filtration barrier remodeling in the transgenic Ren2 rat. American Journal of Physiology - Renal Physiology, 2009, 296, F1013-F1022.	1.3	45
140	Characterization of the Cardiac Renin Angiotensin System in Oophorectomized and Estrogen-Replete mRen2.Lewis Rats. PLoS ONE, 2013, 8, e76992.	1.1	45
141	Angiotensin II and angiotensin (1–7) excite neurons in the canine medulla in vitro. Brain Research Bulletin, 1990, 24, 275-280.	1.4	44
142	Cardiac Kallikrein-Kinin System Is Upregulated in Chronic Volume Overload and Mediates an Inflammatory Induced Collagen Loss. PLoS ONE, 2012, 7, e40110.	1.1	44
143	Mineralocorticoid Receptor Antagonism Attenuates Vascular Apoptosis and Injury via Rescuing Protein Kinase B Activation. Hypertension, 2009, 53, 158-165.	1.3	42
144	Using Angiotensin Converting Enzyme Inhibitors in African-American Hypertensives: A New Approach to Treating Hypertension and Preventing Target-Organ Damage. Current Medical Research and Opinion, 2000, 16, 66-79.	0.9	41

#	Article	IF	CITATIONS
145	Novel mechanisms linking angiotensin II and early atherogenesis. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2000, 1, 11-17.	1.0	41
146	Angiotensin-(1–12) requires angiotensin converting enzyme and AT ₁ receptors for cardiovascular actions within the solitary tract nucleus. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H763-H771.	1.5	41
147	Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Biochemical and Biophysical Research Communications, 2016, 478, 559-564.	1.0	41
148	G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Translational Research, 2018, 199, 39-51.	2.2	41
149	The Hypertension-Lipid Connection: Insights into the Relation between Angiotensin II and Cholesterol in Atherogenesis. American Journal of the Medical Sciences, 2002, 323, 17-24.	0.4	40
150	Angiotensin II Activation of mTOR Results in Tubulointerstitial Fibrosis through Loss of N-Cadherin. American Journal of Nephrology, 2011, 34, 115-125.	1.4	40
151	Effect of Age, Estrogen Status, and Late-Life GPER Activation on Cardiac Structure and Function in the Fischer344A—Brown Norway Female Rat. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 152-162.	1.7	40
152	Addressing the theoretical and clinical advantages of combination therapy with inhibitors of the renin–angiotensin–aldosterone system: Antihypertensive effects and benefits beyond BP control. Life Sciences, 2010, 86, 289-299.	2.0	39
153	Chymase Mediates Injury and Mitochondrial Damage in Cardiomyocytes during Acute Ischemia/Reperfusion in the Dog. PLoS ONE, 2014, 9, e94732.	1.1	39
154	Characterization by high performance liquid chromatography of angiotensin peptides in the plasma and cerebrospinal fluid of the dog. Peptides, 1987, 8, 939-942.	1.2	38
155	Angiotensin-(1–7) immunoreactivity in the hypothalamus of the (mRen-2d)27 transgenic rat. Brain Research, 1998, 798, 36-45.	1.1	38
156	Renin???Angiotensin System as a Therapeutic Target in Managing Atherosclerosis. American Journal of Therapeutics, 2004, 11, 44-53.	0.5	38
157	Pressor responses of angiotensin II microinjected into the dorsomedial medulla of the dog. Brain Research, 1987, 414, 294-300.	1.1	37
158	Pathologic consequences of increased angiotensin II activity. Cardiovascular Drugs and Therapy, 1996, 10, 511-518.	1.3	37
159	Differential actions of angiotensin-(1-7) in the kidney. Kidney International, 1998, 54, S3-S6.	2.6	37
160	Baroreceptor reflex regulation in anesthetized transgenic rats with low glia-derived angiotensinogen. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1412-H1419.	1.5	37
161	Chronic immunoneutralization of brain angiotensin-(1-12) lowers blood pressure in transgenic (mRen2)27 hypertensive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R111-R115.	0.9	37
162	Individualizing hypertension treatment with impedance cardiography: a meta-analysis of published trials. Therapeutic Advances in Cardiovascular Disease, 2010, 4, 5-16.	1.0	37

#	Article	IF	CITATIONS
163	Comparative effect of direct renin inhibition and AT ₁ R blockade on glomerular filtration barrier injury in the transgenic Ren2 rat. American Journal of Physiology - Renal Physiology, 2010, 298, F655-F661.	1.3	37
164	Increased Inflammation in Pericardial Fluid Persists 48 Hours After Cardiac Surgery. Circulation, 2017, 136, 2284-2286.	1.6	36
165	Differential response of angiotensin peptides in the urine of hypertensive animals. Regulatory Peptides, 1999, 80, 57-66.	1.9	35
166	Characterization of angiotensin-(1–7) receptor subtype in mesenteric arteries. Peptides, 2003, 24, 455-462.	1.2	35
167	Salt-Induced Renal Injury in Spontaneously Hypertensive Rats: Effects of Nebivolol. American Journal of Nephrology, 2010, 32, 557-566.	1.4	35
168	Novel Cardiac Intracrine Mechanisms Based on Ang-(1-12)/Chymase Axis Require a Revision of Therapeutic Approaches in Human Heart Disease. Current Hypertension Reports, 2017, 19, 16.	1.5	35
169	Noninvasive hemodynamic profiles in hypertensive subjects. American Journal of Hypertension, 2005, 18, 51-59.	1.0	34
170	Self-Reported Influences of Hopelessness, Health Literacy, Lifestyle Action, and Patient Inertia on Blood Pressure Control in a Hypertensive Emergency Department Population. American Journal of the Medical Sciences, 2009, 338, 368-372.	0.4	34
171	Blunting of cardioprotective actions of estrogen in female rodent heart linked to altered expression of cardiac tissue chymase and ACE2. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2017, 18, 147032031772227.	1.0	34
172	Nebivolol reduces cardiac angiotensin II, associated oxidative stress and fibrosis but not arterial pressure in salt-loaded spontaneously hypertensive rats. Journal of Hypertension, 2012, 30, 1766-1774.	0.3	34
173	Importance of the Renin-Angiotensin-Aldosterone System (RAS) in the Physiology and Pathology of Hypertension. Drugs, 1990, 39, 1-8.	4.9	33
174	Role of Blood Pressure Reduction in Prevention of Cardiac and Vascular Hypertrophy. American Journal of Hypertension, 2005, 18, 922-929.	1.0	32
175	Angiotensin Peptides Modulate Bradykinin Levels in the Interstitium of the Dog Heart in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 324-329.	1.3	31
176	Does Angiotensin-(1–7) Contribute to Cardiac Adaptation and Preservation of Endothelial Function in Heart Failure?. Circulation, 2002, 105, 1523-1525.	1.6	31
177	Therapeutic Targets in Liver Transplantation: Angiotensin II in Nonsteatotic Grafts and Angiotensin-(1—7) in Steatotic Grafts. American Journal of Transplantation, 2009, 9, 439-451.	2.6	31
178	Mineralocorticoid Receptor-Dependent Proximal Tubule Injury Is Mediated by a Redox-Sensitive mTOR/S6K1 Pathway. American Journal of Nephrology, 2012, 35, 90-100.	1.4	31
179	NK1 Receptor Antagonist Blocks Angiotensin II Responses in Renin Transgenic Rat Medulla Oblongata. Hypertension, 1998, 31, 473-479.	1.3	30
180	The Protective Effects of Angiotensin II Blockade with Olmesartan Medoxomil on Resistance Vessel Remodeling (The VIOS study). American Journal of Cardiovascular Drugs, 2006, 6, 335-342.	1.0	30

#	Article	IF	CITATIONS
181	Modulation of Reflex Function by Endogenous Angiotensins in Older Transgenic Rats With Low Glial Angiotensinogen. Hypertension, 2008, 51, 1326-1331.	1.3	30
182	Effect of angiotensin receptor blockade on endothelial function: focus on olmesartan medoxomil. Vascular Health and Risk Management, 2009, 5, 301.	1.0	30
183	Female Heart Health: Is GPER the Missing Link?. Frontiers in Endocrinology, 2019, 10, 919.	1.5	30
184	Mechanisms by which angiotensin-receptor blockers increase ACE2 levels. Nature Reviews Cardiology, 2020, 17, 378-378.	6.1	30
185	Role of AT1 and AT2 Receptors in the Plasma Clearance of Angiotensin II. Journal of Cardiovascular Pharmacology, 1998, 31, 464-469.	0.8	30
186	Angiotensin receptors contribute to blood pressure homeostasis in salt-depleted SHR. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R164-R173.	0.9	29
187	Predominance of AT1 Blockade Over Mas–Mediated Angiotensin-(1–7) Mechanisms in the Regulation of Blood Pressure and Renin–Angiotensin System in mRen2.Lewis Rats. American Journal of Hypertension, 2013, 26, 583-590.	1.0	29
188	Increased fibroblast chymase production mediates procollagen autophagic digestion in volume overload. Journal of Molecular and Cellular Cardiology, 2016, 92, 1-9.	0.9	29
189	Receptor subtype that mediates the neuronal effects of angiotensin ii in the rat dorsal medulla. Brain Research Bulletin, 1993, 31, 195-200.	1.4	28
190	Proximal tubule microvilli remodeling and albuminuria in the Ren2 transgenic rat. American Journal of Physiology - Renal Physiology, 2007, 292, F861-F867.	1.3	28
191	Reduced circulating levels of angiotensin-(1 7) in systemic sclerosis: a new pathway in the dysregulation of endothelial-dependent vascular tone control. Annals of the Rheumatic Diseases, 2007, 66, 1305-1310.	0.5	28
192	Angiotensin II AT1 receptor blockade normalizes CD11b+ monocyte production in bone marrow of hypercholesterolemic monkeys. Atherosclerosis, 2008, 196, 624-632.	0.4	28
193	Angiotensin-(1-7) serves as an aquaretic by increasing water intake and diuresis in association with downregulation of aquaporin-1 during pregnancy in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1073-R1080.	0.9	28
194	Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in the TGR(mRen2)27 rat. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1540-H1550.	1.5	28
195	Primacy of angiotensin converting enzyme in angiotensin-(1–12) metabolism. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H644-H650.	1.5	28
196	Commentary on Tikellis et al. Hypertension, 2003, 41, 390-391.	1.3	27
197	Comparison of Inhibitory Effects of Irbesartan and Atorvastatin Treatment on the Renin Angiotensin System (RAS) in Veins: A Randomized Double-Blind Crossover Trial in Healthy Subjects. Journal of Clinical Pharmacology, 2007, 47, 112-120.	1.0	27
198	Differential effect of low-dose thiazides on the renin angiotensin system in genetically hypertensive and normotensive rats. Journal of the American Society of Hypertension, 2008, 2, 106-115.	2.3	27

#	Article	IF	CITATIONS
199	Cardiac angiotensin-(1–12) expression and systemic hypertension in rats expressing the human angiotensinogen gene. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H995-H1002.	1.5	27
200	Consortium for Southeastern Hypertension Control. American Journal of the Medical Sciences, 1999, 318, 357.	0.4	27
201	A Hypothesis Regarding the Function of Angiotensin Peptides in the Brain. Clinical and Experimental Hypertension, 1988, 10, 107-121.	0.3	26
202	Rosuvastatin ameliorates the development of pulmonary arterial hypertension in the transgenic (mRen2)27 rat. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1128-H1139.	1.5	26
203	Role of Tissue Renin-angiotensin System and the Chymase/angiotensin-(1-12) Axis in the Pathogenesis of Diabetic Retinopathy. Current Medicinal Chemistry, 2017, 24, 3104-3114.	1.2	26
204	Cellular basis of angiotensin-(1-7)-induced augmentation of left ventricular functional performance in heart failure. International Journal of Cardiology, 2017, 236, 405-412.	0.8	25
205	Chronic Estrogen Treatment in Female Transgenic (mRen2)27 Hypertensive Rats Augments Endothelium-Derived Nitric Oxide Release. American Journal of Hypertension, 1997, 10, 662-670.	1.0	24
206	Divergent Regulation of Circulating and Intrarenal Renin-Angiotensin Systems in Response to Long-Term Blockade. American Journal of Nephrology, 2005, 25, 335-341.	1.4	24
207	Hemodynamic and hormonal patterns of untreated essential hypertension in men and women. Therapeutic Advances in Cardiovascular Disease, 2013, 7, 293-305.	1.0	24
208	Hypertensive mechanisms and converting enzyme inhibitors. Clinical Cardiology, 1991, 14, 56-62.	0.7	23
209	Mast Cell Inhibition Attenuates Cardiac Remodeling and Diastolic Dysfunction in Middle-aged, Ovariectomized Fischer 344 × Brown Norway Rats. Journal of Cardiovascular Pharmacology, 2016, 68, 49-57.	0.8	23
210	The renin–angiotensin system biomolecular cascade: a 2022 update of newer insights and concepts. Kidney International Supplements, 2022, 12, 36-47.	4.6	23
211	Angiotensin-[1-7]. Journal of Cardiovascular Pharmacology, 1990, 16, S19-S24.	0.8	22
212	Clinical and economic outcomes associated with amlodipine/renin–angiotensin system blocker combinations. Therapeutic Advances in Cardiovascular Disease, 2013, 7, 27-39.	1.0	22
213	Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010–2018). Expert Opinion on Therapeutic Patents, 2018, 28, 755-764.	2.4	22
214	Nebivolol improves insulin sensitivity in the TGR(Ren2)27 rat. Metabolism: Clinical and Experimental, 2011, 60, 1757-1766.	1.5	21
215	Rats with Low Brain Angiotensinogen Do Not Exhibit Insulin Resistance During Early Aging. Endocrine, 2006, 30, 167-174.	2.2	20
216	Estrogen, nitric oxide, and hypertension differentially modulate agonist-induced contractile responses in female transgenic (mRen2)27 hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1995-H2001.	1.5	20

#	Article	IF	CITATIONS
217	Renin Inhibition and AT1R blockade improve metabolic signaling, oxidant stress and myocardial tissue remodeling. Metabolism: Clinical and Experimental, 2013, 62, 861-872.	1.5	20
218	Intracellular angiotensin-(1–12) changes the electrical properties of intact cardiac muscle. Molecular and Cellular Biochemistry, 2016, 422, 31-40.	1.4	20
219	Angiotensins differentially activate phospholipase D in vascular smooth muscle cells from spontaneously hypertensive and Wistar-Kyoto rats. American Journal of Hypertension, 1995, 8, 1105-1111.	1.0	19
220	Hypothalamic Substance P Release. Hypertension, 1997, 29, 510-513.	1.3	19
221	Modulation of cardiac L-type Ca ²⁺ current by angiotensin-(1-7): normal <i>versus</i> heart failure. Therapeutic Advances in Cardiovascular Disease, 2015, 9, 342-353.	1.0	19
222	All antagonists in hypertension, heart failure, and diabetic nephropathy: focus on losartan. Current Medical Research and Opinion, 2004, 20, 279-293.	0.9	18
223	Angiotensin II stimulates arachidonic acid release from bone marrow stromal cells. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2004, 5, 176-182.	1.0	18
224	Decreased cardiac Ang-(1-7) is associated with salt-induced cardiac remodeling and dysfunction. Therapeutic Advances in Cardiovascular Disease, 2010, 4, 17-25.	1.0	18
225	Is Sex a Determinant of COVID-19 Infection? Truth or Myth?. Current Hypertension Reports, 2020, 22, 62.	1.5	18
226	Is hypertension in African-descent populations contributed to by an imbalance in the activities of the ACE2/Ang-(1-7)/Mas and the ACE/Ang II/AT ₁ axes?. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2020, 21, 147032032090818.	1.0	18
227	Salt-Sensitive Hypertension in (<i>m</i> REN-2)27 Transgenic Rats. Hypertension, 1996, 27, 573-577.	1.3	18
228	Cardiovascular, endocrine, and body fluid-electrolyte responses to salt loading in mRen-2 transgenic rats. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1130-H1137.	1.5	17
229	Effect of estrogen on neprilysin expression in uterus and kidney of Sprague–Dawley normotensive and heterozygous (mRen2)27-transgenic hypertensive rats. Peptides, 2006, 27, 2912-2918.	1.2	17
230	Increased hypothalamic angiotensin-(1–7) levels in rats with aortic coarctation-induced hypertension. Peptides, 2007, 28, 1580-1585.	1.2	17
231	Angiotensin (1–12) in Humans With Normal Blood Pressure and Primary Hypertension. Hypertension, 2021, 77, 882-890.	1.3	17
232	Aging and the brain renin-angiotensin system: insights from studies in transgenic rats Cleveland Clinic Journal of Medicine, 2007, 74, S95-S95.	0.6	17
233	Angiotensin and CNS Regulation of Blood Pressure. Clinical and Experimental Hypertension, 1980, 2, 465-477.	1.2	16
234	Cardioprotective role for angiotensin-(1-7) and angiotensin converting enzyme 2 in the heart. Future Cardiology, 2006, 2, 335-342.	0.5	16

#	Article	IF	CITATIONS
235	Activation of the Human Angiotensin-(1-12)-Chymase Pathway in Rats With Human Angiotensinogen Gene Transcripts. Frontiers in Cardiovascular Medicine, 2019, 6, 163.	1.1	16
236	Estrogen receptors are linked to angiotensin-converting enzyme 2 (ACE2), ADAM metallopeptidase domain 17 (ADAM-17), and transmembrane protease serine 2 (TMPRSS2) expression in the human atrium: insights into COVID-19. Hypertension Research, 2021, 44, 882-884.	1.5	16
237	Role of Nitric Oxide in the Evolution of Renal Ischemia in Two-Kidney, One-Clip Renovascular Hypertension Hypertension Research, 1998, 21, 267-277.	1.5	15
238	Alterations in Sympathetic Ganglionic Transmission in Response to Angiotensin II in (mRen2)27 Transgenic Rats. Hypertension, 2004, 43, 270-275.	1.3	15
239	Vascular Responses to Angiotensin-(1-7) During the Estrous Cycle. Endocrine, 2004, 24, 161-166.	2.2	15
240	Combination of direct renin inhibition with angiotensin type 1 receptor blockade improves aldosterone but does not improve kidney injury in the transgenic Ren2 rat. Regulatory Peptides, 2012, 176, 36-44.	1.9	15
241	Renin–angiotensin–aldosterone system gender differences in an Afro-Caribbean population. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 539-546.	1.0	15
242	Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR. Journal of Cellular Physiology, 2018, 233, 3330-3342.	2.0	15
243	NLRP3 inhibition improves heart function in GPER knockout mice. Biochemical and Biophysical Research Communications, 2019, 514, 998-1003.	1.0	15
244	Newly developed radioimmunoassay for Human Angiotensin-(1–12) measurements in plasma and urine. Molecular and Cellular Endocrinology, 2021, 529, 111256.	1.6	15
245	Nebivolol Attenuates Maladaptive Proximal Tubule Remodeling in Transgenic Rats. American Journal of Nephrology, 2010, 31, 262-272.	1.4	14
246	Restoration of the blood pressure circadian rhythm by direct renin inhibition and blockade of angiotensin II receptors in mRen2.Lewis hypertensive rats. Therapeutic Advances in Cardiovascular Disease, 2012, 6, 15-29.	1.0	14
247	Critical role of the chymase/angiotensin-(1–12) axis in modulating cardiomyocyte contractility. International Journal of Cardiology, 2018, 264, 137-144.	0.8	14
248	The Angiotensin-(1–12)/Chymase axis as an alternate component of the tissue renin angiotensin system. Molecular and Cellular Endocrinology, 2021, 529, 111119.	1.6	14
249	Drug Evaluations Cardiovascular & Renal: Biology of angiotensin II receptor inhibition with a focus on losartan: A new drug for the treatment of hypertension. Expert Opinion on Investigational Drugs, 1996, 5, 1201-1214.	1.9	13
250	The angiotensin II AT1 receptor antagonist irbesartan prevents thromboxane A2-induced vasoconstriction in the rat hind-limb vascular bed in vivo. Journal of Hypertension, 2001, 19, 561-566.	0.3	13
251	Salt loading exacerbates diastolic dysfunction and cardiac remodeling in young female Ren2 rats. Metabolism: Clinical and Experimental, 2013, 62, 1761-1771.	1.5	13
252	Increased Central Angiotensin and Osmotic Responses in the Ren-2 Transgenic Rat. Hypertension, 1999, 33, 385-388.	1.3	12

#	Article	IF	CITATIONS
253	Central depletion of angiotensinogen is associated with elevated AT1 receptors in the SFO and PVN. Neurotoxicity Research, 2004, 6, 259-265.	1.3	12
254	G-Protein–Coupled Estrogen Receptor Agonist G1 Improves Diastolic Function and Attenuates Cardiac Renin–Angiotensin System Activation in Estrogen-Deficient Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2019, 74, 443-452.	0.8	12
255	Differential Expression of the Angiotensin-(1-12)/Chymase Axis in Human Atrial Tissue. Journal of Surgical Research, 2020, 253, 173-184.	0.8	12
256	Twenty years of progress in angiotensin converting enzyme 2 and its link to SARS-CoV-2 disease. Clinical Science, 2020, 134, 2645-2664.	1.8	12
257	The role of angiotensin antagonism in stroke prevention in patients with hypertension: focus on losartan. Current Medical Research and Opinion, 2004, 20, 1797-1804.	0.9	11
258	Myocardial infarction increases ACE2 expression in rat and humans. European Heart Journal, 2005, 26, 1141-1141.	1.0	10
259	Attenuation of hypertension-mediated glomerulosclerosis in conjunction with increased angiotensin (1–7). Therapeutic Advances in Cardiovascular Disease, 2011, 5, 297-304.	1.0	10
260	The Never-ending Story of Angiotensin Peptides. Circulation Research, 2013, 112, 1086-1087.	2.0	10
261	Comparative Effects of a Novel Angiotensin-Converting Enzyme Inhibitor versus Captopril on Plasma Angiotensins after Myocardial Infarction. Pharmacology, 2014, 94, 21-28.	0.9	10
262	Salt Loading Promotes Kidney Injury via Fibrosis in Young Female Ren2 Rats. CardioRenal Medicine, 2014, 4, 43-52.	0.7	10
263	Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice. Data in Brief, 2017, 10, 465-473.	0.5	10
264	Noncanonical Mechanisms for Direct Bone Marrow Generating Ang II (Angiotensin II) Predominate in CD68 Positive Myeloid Lineage Cells. Hypertension, 2020, 75, 500-509.	1.3	10
265	Reduced Left Atrial Emptying Fraction and Chymase Activation in Pathophysiology of Primary MitralÂRegurgitation. JACC Basic To Translational Science, 2020, 5, 109-122.	1.9	10
266	Review: The role of noninvasive hemodynamic monitoring in the evaluation and treatment of hypertension. Therapeutic Advances in Cardiovascular Disease, 2007, 1, 113-118.	1.0	9
267	Olmesartan for the treatment of arterial hypertension. Future Cardiology, 2008, 4, 357-372.	0.5	9
268	Angiotensin-(1–12)/chymase axis modulates cardiomyocyte L-type calcium currents in rats expressing human angiotensinogen. International Journal of Cardiology, 2019, 297, 104-110.	0.8	9
269	Reversal of angiotensin-(1–12)-caused positive modulation on left ventricular contractile performance in heart failure: Assessment by pressure-volume analysis. International Journal of Cardiology, 2020, 301, 135-141.	0.8	9
270	Angiotensin Receptor Heterogeneity in the Dorsal Medulla Oblongata as Defined by Angiotensin-(1–7). Advances in Experimental Medicine and Biology, 1996, 396, 225-235.	0.8	9

#	Article	IF	CITATIONS
271	New approaches to hypertension management: Always reasonable but now necessary. American Journal of Hypertension, 2005, 18, 23-25.	1.0	8
272	Chronic GPR30 agonist therapy causes restoration of normal cardiac functional performance in a male mouse model of progressive heart failure: Insights into cellular mechanisms. Life Sciences, 2021, 285, 119955.	2.0	8
273	Immunoneutralization of human angiotensin-(1-12) with a monoclonal antibody in a humanized model of hypertension. Peptides, 2022, 149, 170714.	1.2	8
274	Treating the Cardiometabolic Syndrome: An Opportunity to Provide Comprehensive Cardiovascular Risk Reduction. Journal of the Cardiometabolic Syndrome, 2006, 1, 358-361.	1.7	7
275	Cost-Effectiveness of Impedance Cardiography Testing in Uncontrolled Hypertension. The American Heart Hospital Journal, 2006, 4, 279-289.	0.2	7
276	Low glial angiotensinogen improves body habitus, diastolic function, and exercise tolerance in aging male rats. Cardiovascular Endocrinology, 2012, 1, 49-58.	0.8	7
277	Mast cell peptidases (carboxypeptidase A and chymase)-mediated hydrolysis of human angiotensin-(1–12) substrate. Biochemical and Biophysical Research Communications, 2019, 518, 651-656.	1.0	7
278	Atrial angiotensin-(1-12)/chymase expression data in patient of heart diseases. Data in Brief, 2020, 31, 105744.	0.5	7
279	Angiotensin-(1-7). , 2005, , 100-110.		6
280	Administration of D-alanine-[Ang-(1-7)] (A-779) prior to pregnancy in Sprague Dawley rats produces antidiuresis in late gestation. Journal of the American Society of Hypertension, 2008, 2, 425-430.	2.3	6
281	Statin Treatment in Hypercholesterolemic Men Does Not Attenuate Angiotensin II-Induced Venoconstriction. PLoS ONE, 2014, 9, e103909.	1.1	6
282	Estrogen modulates the differential expression of cardiac myocyte chymase isoforms and diastolic function. Molecular and Cellular Biochemistry, 2019, 456, 85-93.	1.4	6
283	Targeting the RAAS for the treatment of atherosclerosis. Drug Discovery Today: Therapeutic Strategies, 2005, 2, 221-229.	0.5	5
284	Incremental Risk-Factor Reduction Improves Overall Cardiovascular Benefit: Is It Time to Abandon the Silos?. Journal of Clinical Hypertension, 2006, 8, 686-688.	1.0	5
285	Exercise training prevents development of cardiac contractile dysfunction in hypertensive TG(mREN2)27 rats. Journal of the American Society of Hypertension, 2007, 1, 393-399.	2.3	5
286	Clinical utility of fixed-dose combinations in hypertension: evidence for the potential of nebivolol/valsartan. Integrated Blood Pressure Control, 2014, 7, 61.	0.4	5
287	Letter to the Editor: Brain renin–angiotensin system and liver-directed siRNA targeted to angiotensinogen. Clinical Science, 2021, 135, 907-910.	1.8	5
288	Characterization of vascular reactivity in dorsal hand veins after oral rosiglitazone treatment in healthy subjects. International Journal of Clinical Pharmacology and Therapeutics, 2008, 46, 30-39.	0.3	5

#	Article	IF	CITATIONS
289	Role of olmesartan in combination therapy in blood pressure control and vascular function. Vascular Health and Risk Management, 2010, 6, 701.	1.0	4
290	COSEHC global vascular risk management quality improvement program: rationale and design. Vascular Health and Risk Management, 2010, 6, 1135.	1.0	4
291	Emergency Department Patients Selfâ€Report Higher Patient Inertia, Hopelessness, and Harmful Lifestyle Choices Than Community Counterparts. Journal of Clinical Hypertension, 2012, 14, 828-835.	1.0	4
292	Impact of Performance Improvement Continuing Medical Education on Cardiometabolic Risk Factor Control: The COSEHC Initiative. Journal of Continuing Education in the Health Professions, 2014, 34, 25-36.	0.4	4
293	Transgenic Rats with Low Brain Renin-Angiotensin System Activity Due to Glial Deficiency Are Protected Against Heart Failure Late in Life. Journal of Cardiac Failure, 2007, 13, S83.	0.7	3
294	The COSEHC™ Global Vascular Risk Management quality improvement program: first follow-up report. Vascular Health and Risk Management, 2013, 9, 391.	1.0	3
295	Amplifying effect of chronic lisinopril therapy on diastolic function and the angiotensin-(1-7) Axis by the G1 agonist in ovariectomized spontaneously hypertensive rats. Translational Research, 2021, 235, 62-76.	2.2	3
296	Chronic Intracerebroventricular AT1 Receptor Blockade, but not Renin Inhibition, Normalizes Blood Pressure in (mRen2)27 Transgenic Rats. FASEB Journal, 2008, 22, .	0.2	3
297	The Impact of ChangingICDCode on Hypertension-Related Mortality in the Southeastern United States from 1994-2005. Journal of Clinical Hypertension, 2010, 12, 213-222.	1.0	2
298	The Renin–Angiotensin System and the Heart. , 2018, , 43-55.		2
299	COSEHC Overview. American Journal of the Medical Sciences, 2004, 327, 233.	0.4	1
300	Editorial: Of gender, statins, and coronary artery interventions. Therapeutic Advances in Cardiovascular Disease, 2008, 2, 73-74.	1.0	1
301	Questions to ponder. Therapeutic Advances in Cardiovascular Disease, 2008, 2, 417-418.	1.0	1
302	Molecular Signaling Mechanisms of the Renin-Angiotensin System in Heart Failure. , 2020, , 76-90.e4.		1
303	Atrial appendage angiotensin-converting enzyme-2, aging and cardiac surgical patients: a platform for understanding aging-related coronavirus disease-2019 vulnerabilities. Current Opinion in Anaesthesiology, 2021, 34, 187-198.	0.9	1
304	Angiotensin-(1-7) and theÂHeart. , 2019, , 83-104.		1
305	Spironolactone Prevents Activation of the Intrarenal Renin-Angiotensin System and Increases Survival in (mREN2) 27 Transgenic Rats with Malignant Hypertension Hypertension, 2000, 36, 724-724.	1.3	1
306	Exogenous Angiotensinâ€(1–12) Impairs Baroreflex Sensitivity in the Solitary Tract Nucleus in Anesthetized Spragueâ€Dawley Rats. FASEB Journal, 2008, 22, .	0.2	1

#	Article	IF	CITATIONS
307	Inhibition of the PI3 Kinase Signal Transduction Pathway in Nucleus Tractus Solitarii of (mRen2)27 Transgenic Rats improves Baroreceptor Sensitivity. FASEB Journal, 2008, 22, 737.38.	0.2	1
308	The Renin–Angiotensin System and the Heart. , 2009, , 181-188.		1
309	Chymaseâ€dependent generation of Angiotensin II from Angiotensinâ€(1–12) in human atrial tissue. FASEB Journal, 2010, 24, 605.4.	0.2	1
310	Equivalence of G1/GPER Monotherapy Compared with Dual Administration of G1 and Lisinopril in Preventing Diastolic Dysfunction due to Estrogen Loss in SHR. FASEB Journal, 2019, 33, 532.5.	0.2	1
311	Abstract 12677: Impaired Cardiomyocyte Contractility to Angiotensin-(1-12) in a Humanized Angiotensinogen Model of Hypertension. Circulation, 2020, 142, .	1.6	1
312	Internalization of Angiotensinâ€(1â€12) in Adult Retinal Pigment Epithelialâ€19 Cells. FASEB Journal, 2022, 36, .	0.2	1
313	Effects of irbesartan on platelet aggregation and markers of inflammation in hypertensive patients with and without atherosclerotic cardiovascular disease. American Journal of Hypertension, 2004, 17, S115-S116.	1.0	Ο
314	Apparent prevalence of primary aldosteronism in a referral practice: a retrospective study. American Journal of Hypertension, 2004, 17, S239-S240.	1.0	0
315	Response to Reduction of Blood Pressure Levels Study Group. Hypertension, 2006, 48, .	1.3	0
316	Memorial to Manuel Luque Otero, MD. Hypertension, 2007, 50, 595-595.	1.3	0
317	Interplay Between ACE2 and Angiotensin-(1-7) in the Regulation of Blood Pressure. Current Hypertension Reviews, 2007, 3, 97-104.	0.5	0
318	Editorial: On the selective inhibitors of Cyclooxygenase-2: Do we have a last word?. Therapeutic Advances in Cardiovascular Disease, 2008, 2, 75-78.	1.0	0
319	Editorial. Therapeutic Advances in Cardiovascular Disease, 2009, 3, 5-5.	1.0	0
320	Memorial. Therapeutic Advances in Cardiovascular Disease, 2009, 3, 101-101.	1.0	0
321	ARBITER 6-HALTS. Does it have the power to settle all matters?. Therapeutic Advances in Cardiovascular Disease, 2010, 4, 77-81.	1.0	0
322	Response to "Angiotensin-(1-7) in the Central Regulation of Blood Pressure and Renin-Angiotensin System". American Journal of Hypertension, 2013, 26, 1175-1175.	1.0	0
323	Editorial. Therapeutic Advances in Cardiovascular Disease, 2015, 9, 113-114.	1.0	0
324	Preface. Therapeutic Advances in Cardiovascular Disease, 2016, 10, 116-117.	1.0	0

19

#	Article	IF	CITATIONS
325	Walmor C. De Mello. Hypertension, 2017, 69, 992-993.	1.3	Ο
326	A16670 Development of a Transgenic Rat Expressing the Human Chymase Gene to Study Human Cardiovascular Disease. Journal of Hypertension, 2018, 36, e87-e88.	0.3	0
327	Edward D. Frohlich, MD. Hypertension, 2019, 74, 1229-1231.	1.3	Ο
328	Commentary on "angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be harmful in patients with diabetes during COVID-19 pandemic― Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2020, 14, 1401-1402.	1.8	0
329	Commentary on: Renin–angiotensin system overactivation in perivascular adipose tissue contributes to vascular dysfunction in heart failure. Clinical Science, 2021, 135, 683-686.	1.8	Ο
330	Urinary Angiotensin-(1-7), a Novel Vasodilator, Increases Throughout Normal Pregnancy. Hypertension, 2000, 36, 700-700.	1.3	0
331	Predominance of ACE2â€Dependent Metabolism of Angiotensin II But Not Angiotensin I In Sheep Renal Proximal Tubules and Urine. FASEB Journal, 2006, 20, .	0.2	Ο
332	Reduced Formation of Angâ€(1–7) by ACE2 in Dorsal Medulla Oblongata of Spragueâ€Dawley (SD) and ASrAogen Rats During Aging. FASEB Journal, 2006, 20, A1209.	0.2	0
333	Impaired Baroreceptor Reflex Function of Older ASrAOGEN Rats. FASEB Journal, 2006, 20, A1209.	0.2	Ο
334	Exercise training maintains cardiac output and stroke volume in hypertensive TG (mRENâ€2)27 rats with impaired diastolic function. FASEB Journal, 2007, 21, A930.	0.2	0
335	Decidualization of pseduopregnant uterus is associated with marked reduction in Ang II and Angâ€(1â€7) content. FASEB Journal, 2007, 21, A1252.	0.2	Ο
336	Experimental Hypertension is Associated with Differential Expression of Angiotensinâ€(1–12) in Heart of Hypertensive and Normotensive Rats. FASEB Journal, 2008, 22, 1210.20.	0.2	0
337	Female gender is associated with decreased oxidative stress and increased insulinâ€stimulated glucose uptake in skeletal muscle in TGR(mRenâ€2)27 rats. FASEB Journal, 2008, 22, 1226.33.	0.2	Ο
338	Renin Inhibition Attenuates Ang II Induced Oxidative Stress and Remodeling in the Pancreas of the Ren2 Rat (tg (mREN2)27). FASEB Journal, 2008, 22, 758.12.	0.2	0
339	Salt and Heart: RAAS Involvement. , 2009, , 165-173.		Ο
340	Newer Insights into the Biochemical Physiology of the Renin–Angiotensin System: Role of Angiotensin-(1-7), Angiotensin Converting Enzyme 2, and Angiotensin-(1-12). , 2009, , 7-17.		0
341	Mineralcorticoid Receptor (MR) Antagonism Attenuates Glomerular Filtration Barrier Remodeling in the Transgenic Ren2 Rat. FASEB Journal, 2009, 23, 803.16.	0.2	0
342	Angiotensin-(1-7), Angiotensin-Converting Enzyme 2, and New Components of the Renin Angiotensin System. , 2010, , 121-133.		0

#	Article	IF	CITATIONS
343	Effects of combination therapy with valsartan and aliskiren on arterial pressure, cardiac hypertrophy and urinary protein excretion in hypertensive rats. FASEB Journal, 2012, 26, 1105.4.	0.2	0
344	Differential effects of ACE and chymase in the metabolism of exogenous angiotensinâ€(1–12) in Wistarâ€Kyoto rats. FASEB Journal, 2012, 26, 1105.3.	0.2	0
345	Role of Chymase in Matrix and Myocardial Remodeling Due to Mitral Regurgitation: Implications for Therapy. , 2013, , 201-214.		0
346	The Mitochondrialâ€ŧargeted Antioxidant MitoQ Attenuates LV Dysfunction and Gene Expression Related to Oxidative Stress in Cardiomyocyteâ€specific GPER KO Female Mice. FASEB Journal, 2018, 32, 618.20.	0.2	0
347	GPER Agonist G1, but Not Other Specific ERs Improves Diastolic Function and Attenuates Cardiac RAS Activation in Estrogenâ€deficient SHR. FASEB Journal, 2018, 32, 584.2.	0.2	0
348	Development of Isolated Diastolic Dysfunction Associated with Early Impairment in Coronary Blood Flow in Hypertensive Diabetes. FASEB Journal, 2018, 32, 903.5.	0.2	0
349	Knockdown of GPER in Cardiomyocytes Activates NLRP3 Pathways. FASEB Journal, 2018, 32, 718.4.	0.2	0
350	Estrogen Modulates the Differential Expression of Cardiac Myocyte Chymase Isoforms and Diastolic Function. FASEB Journal, 2019, 33, 576.1.	0.2	0
351	Primacy of Chymase over Angiotensin Converting Enzyme in the Production of Angiotensin II in Rat Bone Marrow Tissue. FASEB Journal, 2019, 33, 577.3.	0.2	0
352	Therapeutic Nrf2 Activation improves LV function in the cardiomyocyteâ€specific GPER knockdown mouse. FASEB Journal, 2020, 34, 1-1.	0.2	0