
Salvatore Chiantia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Hantavirus N Protein Intracellular Dynamics and Localization. Viruses, 2022, 14, 457.	1.5	3
2	Influenza A virus hemagglutinin prevents extensive membrane damage upon dehydration. BBA Advances, 2022, 2, 100048.	0.7	3
3	Mandipropamid as a chemical inducer of proximity for in vivo applications. Nature Chemical Biology, 2022, 18, 64-69.	3.9	15
4	Detection of Envelope Glycoprotein Assembly from Old World Hantaviruses in the Golgi Apparatus of Living Cells. Journal of Virology, 2021, 95, .	1.5	7
5	Spectral Detection Enables Multi-Color Fluorescence Fluctuation Spectroscopy Studies in Living Cells. Biophysical Journal, 2021, 120, 356a.	0.2	1
6	Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection. ELife, 2021, 10, .	2.8	15
7	Pantoea stewartii WceF is a glycan biofilm-modifying enzyme with a bacteriophage tailspike-like fold. Journal of Biological Chemistry, 2021, 296, 100286.	1.6	5
8	Influenza A M2 recruits M1 to the plasma membrane: A fluorescence fluctuation microscopy study. Biophysical Journal, 2021, 120, 5478-5490.	0.2	13
9	Fluorescence microscopy methods for the study of protein oligomerization. Progress in Molecular Biology and Translational Science, 2020, 169, 1-41.	0.9	11
10	Differentially-Charged Liposomes Interact with Alphaherpesviruses and Interfere with Virus Entry. Pathogens, 2020, 9, 359.	1.2	8
11	Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models. Biomolecules, 2020, 10, 802.	1.8	11
12	Purely Polysaccharide-Based Biofilm Matrix Provides Size-Selective Diffusion Barriers for Nanoparticles and Bacteriophages. Biomacromolecules, 2019, 20, 3842-3854.	2.6	45
13	Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1123-1134.	1.4	25
14	Self-association and subcellular localization of Puumala hantavirus envelope proteins. Scientific Reports, 2019, 9, 707.	1.6	15
15	Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization. Bioscience Reports, 2019, 39, .	1.1	19
16	Direct Evidence of APLP1 Trans Interactions in Cell-Cell Adhesion Platforms Investigated via Fluorescence Fluctuation Spectroscopy. Biophysical Journal, 2018, 114, 373a.	0.2	0
17	A Fluorescence Fluctuation Spectroscopy Assay of Protein-Protein Interactions at Cell-Cell Contacts. Journal of Visualized Experiments, 2018, , .	0.2	15
18	Oligomerization and Nuclear Shuttling Dynamics of Viral Proteins Studied by Quantitative Molecular Brightness Analysis using Fluorescence Correlation Spectroscopy. Biophysical Journal, 2018, 114, 350a.	0.2	0

SALVATORE CHIANTIA

#	Article	IF	CITATIONS
19	Optimal fluorescent protein tags for quantifying protein oligomerization in living cells. Scientific Reports, 2018, 8, 10634.	1.6	80
20	Cell cycle dependent changes in the plasma membrane organization of mammalian cells. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 350-359.	1.4	18
21	Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes. Journal of Virology, 2017, 91, .	1.5	38
22	Connectivity pattern modifies excited state relaxation dynamics of fluorophore–photoswitch molecular dyads. Physical Chemistry Chemical Physics, 2017, 19, 4010-4018.	1.3	4
23	Direct evidence of amyloid precursor–like protein 1 <i>trans</i> interactions in cell–cell adhesion platforms investigated via fluorescence fluctuation spectroscopy. Molecular Biology of the Cell, 2017, 28, 3609-3620.	0.9	34
24	Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5. PLoS ONE, 2017, 12, e0185715.	1.1	7
25	Amyloid precursorâ€like protein 1 (APLP1) exhibits stronger zincâ€dependent neuronal adhesion than amyloid precursor protein and <scp>APLP</scp> 2. Journal of Neurochemistry, 2016, 137, 266-276.	2.1	23
26	Self-assembly of a cholesteryl-modified nucleoside into tubular structures from giant unilamellar vesicles. RSC Advances, 2015, 5, 4502-4510.	1.7	4
27	Time-controlled phagocytosis of asymmetric liposomes: Application to phosphatidylserine immunoliposomes binding HIV-1 virus-like particles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1985-1992.	1.7	10
28	Selective Association of Outer Surface Lipoproteins with the Lipid Rafts of Borrelia burgdorferi. MBio, 2014, 5, e00899-14.	1.8	31
29	αEnv-decorated phosphatidylserine liposomes trigger phagocytosis of HIV-virus-like particles in macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e981-e989.	1.7	14
30	Role of M1 Self-Organization in Influenza Virus Assembly: A Combined Rics and AFM Study. Biophysical Journal, 2014, 106, 61a.	0.2	0
31	pH-Controlled Two-Step Uncoating of Influenza Virus. Biophysical Journal, 2014, 106, 1447-1456.	0.2	106
32	Influenza A Matrix Protein M1 Multimerizes upon Binding to Lipid Membranes. Biophysical Journal, 2014, 107, 912-923.	0.2	62
33	Asymmetric Supported Lipid Bilayer Formation via Methyl-β-Cyclodextrin Mediated Lipid Exchange: Influence of Asymmetry on Lipid Dynamics and Phase Behavior. Langmuir, 2014, 30, 7475-7484.	1.6	54
34	Asymmetry Determines the Effect of Ceramides on Model Membranes. In Natural Membranes Too?. Biophysical Journal, 2014, 106, 82a.	0.2	0
35	Mimicking Apoptosis using Asymmetric Liposomes: A Therapeutic Approach Against Hiv-1 Infection. Biophysical Journal, 2014, 106, 622a.	0.2	Ο
36	Sphingolipids and Membrane Domains: Recent Advances. Handbook of Experimental Pharmacology, 2013, , 33-55.	0.9	29

#	Article	IF	CITATIONS
37	Proving Lipid Rafts Exist: Membrane Domains in the Prokaryote Borrelia burgdorferi Have the Same Properties as Eukaryotic Lipid Rafts. PLoS Pathogens, 2013, 9, e1003353.	2.1	96
38	Lipid Bilayer Asymmetry. , 2013, , 1250-1253.		3
39	Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order. Biophysical Journal, 2012, 103, 2311-2319.	0.2	109
40	Inter-Leaflet Coupling and Domain Formation in Asymmetric Giant Unilamellar Vesicles. Biophysical Journal, 2012, 102, 295a.	0.2	0
41	A novel leaflet-selective fluorescence labeling technique reveals differences between inner and outer leaflets at high bilayer curvature. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1284-1290.	1.4	21
42	Lipid Raft Formation and Properties are Necessary and Sufficient to Explain the Properties of Membrane Domains in B. Burgdorferi and are Necessary for its Membrane Integrity. Biophysical Journal, 2012, 102, 27a.	0.2	0
43	Asymmetric GUVs Prepared by MβCD-Mediated Lipid Exchange: An FCS Study. Biophysical Journal, 2011, 100, L1-L3.	0.2	109
44	Self-Segregation of Myelin Membrane Lipids in Model Membranes. Biophysical Journal, 2011, 101, 2713-2720.	0.2	38
45	Anti-HIV-1 antibodies 2F5 and 4E10 interact differently with lipids to bind their epitopes. Aids, 2011, 25, 419-428.	1.0	20
46	Domain Orientation in the N-Terminal PDZ Tandem from PSD-95 Is Maintained in the Full-Length Protein. Structure, 2011, 19, 810-820.	1.6	41
47	Analysis of Prototype Foamy Virus particle-host cell interaction with autofluorescent retroviral particles. Retrovirology, 2010, 7, 45.	0.9	63
48	Protein-Lipid Interaction and Domain Formation in Asymmetric Membranes. Biophysical Journal, 2010, 98, 668a.	0.2	0
49	Perfringolysin O Association with Ordered Lipid Domains: Implications forÂTransmembrane Protein Raft Affinity. Biophysical Journal, 2010, 99, 3255-3263.	0.2	38
50	Cholesterol Slows down the Lateral Mobility of an Oxidized Phospholipid in a Supported Lipid Bilayer. Langmuir, 2010, 26, 17322-17329.	1.6	32
51	Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20063-20068.	3.3	45
52	Fluorescence correlation spectroscopy in membrane structure elucidation. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 225-233.	1.4	137
53	Accurate Determination of Membrane Dynamics with Line-Scan FCS. Biophysical Journal, 2009, 96, 1999-2008.	0.2	166
54	Asymmetry determines the effects of natural ceramides on model membranes. Soft Matter, 2009, 5, 3279.	1.2	20

SALVATORE CHIANTIA

#	Article	IF	CITATIONS
55	Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes. Science, 2008, 319, 1244-1247.	6.0	2,800
56	Role of ceramide in membrane protein organization investigated by combined AFM and FCS. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1356-1364.	1.4	87
57	Supported Lipid Bilayers on Spacious and pH-Responsive Polymer Cushions with Varied Hydrophilicity. Journal of Physical Chemistry B, 2008, 112, 6373-6378.	1.2	41
58	Effect of Line Tension on the Lateral Organization of Lipid Membranes. Journal of Biological Chemistry, 2007, 282, 33537-33544.	1.6	352
59	Raft Domain Reorganization Driven by Short- and Long-Chain Ceramide:  A Combined AFM and FCS Study. Langmuir, 2007, 23, 7659-7665.	1.6	112
60	Pore Formation by a Bax-Derived Peptide: Effect on the Line Tension of the Membrane Probed by AFM. Biophysical Journal, 2007, 93, 103-112.	0.2	128
61	Effects of Ceramide on Liquid-Ordered Domains Investigated by Simultaneous AFM and FCS. Biophysical Journal, 2006, 90, 4500-4508.	0.2	225
62	Combined AFM and Two-Focus SFCS Study of Raft-Exhibiting Model Membranes. ChemPhysChem, 2006, 7, 2409-2418.	1.0	197
63	Dehydration Damage of Domain-Exhibiting Supported Bilayers:  An AFM Study on the Protective Effects of Disaccharides and Other Stabilizing Substances. Langmuir, 2005, 21, 6317-6323.	1.6	54
64	Lipid Phase Transition in Saccharide-Coated Cholate-Containing Liposomes:Â Coupling to the Surrounding Matrix. Langmuir, 2005, 21, 4108-4116.	1.6	19