Natalia V Gounko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An accelerated procedure for approaching and imaging of optically branded region of interest in tissue. Methods in Cell Biology, 2021, 162, 205-221.	0.5	3
2	Corticotropin-releasing factor induces functional and structural synaptic remodelling in acute stress. Translational Psychiatry, 2021, 11, 378.	2.4	11
3	Torsin and NEP1R1 TDNEP1 phosphatase affect interphase nuclear pore complex insertion by lipidâ€dependent and lipidâ€independent mechanisms. EMBO Journal, 2021, 40, e106914.	3.5	24
4	A workflow for streamlined acquisition and correlation of serial regions of interest in array tomography. BMC Biology, 2021, 19, 152.	1.7	6
5	Prolyl endopeptidase-like is a (thio)esterase involved in mitochondrial respiratory chain function. IScience, 2021, 24, 103460.	1.9	8
6	Preservation of Fluorescence Signal and Imaging Optimization for Integrated Light and Electron Microscopy. Frontiers in Cell and Developmental Biology, 2021, 9, 737621.	1.8	4
7	Synapse type-specific proteomic dissection identifies IgSF8 as a hippocampal CA3 microcircuit organizer. Nature Communications, 2020, 11, 5171.	5.8	35
8	Gold-substituted Silver-intensified Peroxidase Immunolabeling for FIB-SEM Imaging. Journal of Histochemistry and Cytochemistry, 2019, 67, 351-360.	1.3	4
9	Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer's disease and stress disorders. Translational Psychiatry, 2019, 9, 272.	2.4	30
10	Differentiation but not ALS mutations in FUS rewires motor neuron metabolism. Nature Communications, 2019, 10, 4147.	5.8	41
11	PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 277-286.	3.3	64
12	Modernization of Golgi staining techniques for high-resolution, 3-dimensional imaging of individual neurons. Scientific Reports, 2019, 9, 130.	1.6	32
13	An Input-Specific Orphan Receptor GPR158-HSPG Interaction Organizes Hippocampal Mossy Fiber-CA3 Synapses. Neuron, 2018, 100, 201-215.e9.	3.8	60
14	Hsp90 Mediates Membrane Deformation and Exosome Release. Molecular Cell, 2018, 71, 689-702.e9.	4.5	103
15	A Modular Organization of LRR Protein-Mediated Synaptic Adhesion Defines Synapse Identity. Neuron, 2018, 99, 329-344.e7.	3.8	57
16	Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. ELife, 2018, 7, .	2.8	167
17	The <scp>SAC</scp> 1 domain in synaptojanin is required forÂautophagosome maturation at presynapticÂterminals. EMBO Journal, 2017, 36, 1392-1411.	3.5	174
18	The non-coding RNA BC1 regulates experience-dependent structural plasticity and learning. Nature Communications, 2017, 8, 293.	5.8	42

Natalia V Gounko

#	Article	IF	CITATIONS
19	A LRRK2-Dependent EndophilinA Phosphoswitch Is Critical for Macroautophagy at Presynaptic Terminals. Neuron, 2016, 92, 829-844.	3.8	202
20	Torsins Are Essential Regulators of Cellular Lipid Metabolism. Developmental Cell, 2016, 38, 235-247.	3.1	88
21	Thymocyte development in the absence of matrix metalloproteinase-9/gelatinase B. Scientific Reports, 2016, 6, 29852.	1.6	3
22	The Ubiquitin Ligase CBLC Maintains the Network Organization of the Golgi Apparatus. PLoS ONE, 2015, 10, e0138789.	1.1	4
23	Increased biogenesis of glucagon-containing secretory granules and glucagon secretion in BIG3-knockout mice. Molecular Metabolism, 2015, 4, 246-252.	3.0	24
24	Nuclear envelope-associated endosomes deliver surface proteins to the nucleus. Nature Communications, 2015, 6, 8218.	5.8	61
25	ZO-1 and ZO-2 Are Required for Extra-Embryonic Endoderm Integrity, Primitive Ectoderm Survival and Normal Cavitation in Embryoid Bodies Derived from Mouse Embryonic Stem Cells. PLoS ONE, 2014, 9, e99532.	1.1	28
26	Angiopoietin-like 4 Stimulates STAT3-mediated iNOS Expression and Enhances Angiogenesis to Accelerate Wound Healing in Diabetic Mice. Molecular Therapy, 2014, 22, 1593-1604.	3.7	89
27	TMEM115 as an integral membrane protein of the Golgi apparatus involved in retrograde transport. Journal of Cell Science, 2014, 127, 2825-39.	1.2	14
28	Detection of insulin granule exocytosis by an electrophysiology method with high temporal resolution reveals enlarged insulin granule pool in BIG3-knockout mice. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E611-E618.	1.8	11
29	Experience-Dependent Remodeling of Basket Cell Networks in the Dentate Gyrus. Neuron, 2014, 84, 107-122.	3.8	30
30	BIG3 inhibits insulin granule biogenesis and insulin secretion. EMBO Reports, 2014, 15, 714-22.	2.0	21
31	Corticotropin-releasing factor and urocortin regulate spine and synapse formation: structural basis for stress-induced neuronal remodeling and pathology. Molecular Psychiatry, 2013, 18, 86-92.	4.1	27
32	The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development (Cambridge), 2013, 140, 3819-3825.	1.2	73
33	Glutamatergic Synapse Formation is Promoted by α7-Containing Nicotinic Acetylcholine Receptors. Journal of Neuroscience, 2012, 32, 7651-7661.	1.7	127
34	Induction of Dendritic Spines by Â2-Containing Nicotinic Receptors. Journal of Neuroscience, 2012, 32, 8391-8400.	1.7	61
35	HDAC4 Governs a Transcriptional Program Essential for Synaptic Plasticity and Memory. Cell, 2012, 151, 821-834.	13.5	235
36	Localization and functional roles of corticotropin-releasing factor receptor type 2 in the cerebellum. Cerebellum, 2008, 7, 4-8.	1.4	6

Natalia V Gounko

#	Article	IF	CITATIONS
37	Multiple cell adhesion molecules shaping a complex nicotinic synapse on neurons. Molecular and Cellular Neurosciences, 2008, 39, 74-82.	1.0	12
38	Localization and functional roles of corticotropin-releasing factor receptor type 2 in the cerebellum. Cerebellum, 2008, 7, 1-5.	1.4	0
39	In Situ Entry of Oligonucleotides into Brain Cells Can Occur through a Nucleic Acid Channel. Oligonucleotides, 2007, 17, 122-133.	2.7	21
40	The glutamate receptor delta 2 in relation to cerebellar development and plasticity. Neuroscience and Biobehavioral Reviews, 2007, 31, 1095-1100.	2.9	3
41	The dynamic developmental localization of the full-length corticotropin-releasing factor receptor type 2 in rat cerebellum. European Journal of Neuroscience, 2006, 23, 3217-3224.	1.2	13
42	Crn7 Interacts with AP-1 and Is Required for the Maintenance of Golgi Morphology and Protein Export from the Golgi. Journal of Biological Chemistry, 2006, 281, 31070-31078.	1.6	33
43	Histochemical study of effects of weak electromagnetic field on structures of the rat midbrain. Journal of Evolutionary Biochemistry and Physiology, 2005, 41, 119-125.	0.2	0
44	CRF and urocortin differentially modulate GluRδ2 expression and distribution in parallel fiber–Purkinje cell synapses. Molecular and Cellular Neurosciences, 2005, 30, 513-522.	1.0	16
45	Corticotropin-releasing factor and urocortin differentially modulate rat Purkinje cell dendritic outgrowth and differentiation in vitro. European Journal of Neuroscience, 2004, 19, 1749-1758.	1.2	56