David Gil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559872/publications.pdf

Version: 2024-02-01

		430442	377514
51	1,229	18	34
papers	citations	h-index	g-index
53	53	53	1406
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evaluation of Transfer Learning and Fine-Tuning to Nowcast Energy Generation of Photovoltaic Systems in Different Climates. Sustainability, 2022, 14, 3092.	1.6	2
2	QoS of mobile cloud computing applications in healthcare. , 2021, , 81-96.		1
3	A framework for big data analytics in commercial social networks: A case study on sentiment analysis and fake review detection for marketing decision-making. Industrial Marketing Management, 2020, 90, 523-537.	3.7	115
4	A Review of Modelling and Simulation Methods for Flashover Prediction in Confined Space Fires. Applied Sciences (Switzerland), 2020, 10, 5609.	1.3	11
5	A Machine Learning Approach to Reduce Dimensional Space in Large Datasets. IEEE Access, 2020, 8, 148181-148192.	2.6	4
6	Practical I-Voting on Stellar Blockchain. Applied Sciences (Switzerland), 2020, 10, 7606.	1.3	12
7	A Machine Learning and Integration Based Architecture for Cognitive Disorder Detection Used for Early Autism Screening. Electronics (Switzerland), 2020, 9, 516.	1.8	14
8	Using Visualization to Build Transparency in a Healthcare Blockchain Application. Sustainability, 2020, 12, 6768.	1.6	13
9	Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems. Complexity, 2019, 2019, 1-3.	0.9	4
10	Managing Marketing Decision-Making with Sentiment Analysis: An Evaluation of the Main Product Features Using Text Data Mining. Sustainability, 2019, 11, 4235.	1.6	54
11	Deep learning in the fog. International Journal of Distributed Sensor Networks, 2019, 15, 155014771986707.	1.3	14
12	A Review of the Analytics Techniques for an Efficient Management of Online Forums: An Architecture Proposal. IEEE Access, 2019, 7, 12220-12240.	2.6	8
13	Application of Machine Learning in Predicting Performance for Computer Engineering Students: A Case Study. Sustainability, 2019, 11, 2833.	1.6	61
14	Distributed Architectures for Intensive Urban Computing: A Case Study on Smart Lighting for Sustainable Cities. IEEE Access, 2019, 7, 58449-58465.	2.6	22
15	Review of the Complexity of Managing Big Data of the Internet of Things. Complexity, 2019, 2019, 1-12.	0.9	22
16	A Step Further in Sentiment Analysis Application in Marketing Decision-Making. Springer Proceedings in Complexity, 2019, , 211-221.	0.2	2
17	A Hybrid Machine Learning Approach for the Prediction of Grades in Computer Engineering Students. Springer Proceedings in Complexity, 2019, , 125-134.	0.2	2
18	Scheduling framework for distributed intrusion detection systems over heterogeneous network architectures. Journal of Network and Computer Applications, 2018, 108, 76-86.	5.8	32

#	Article	IF	Citations
19	Identifying central and peripheral nerve fibres with an artificial intelligence approach. Applied Soft Computing Journal, 2018, 67, 276-285.	4.1	6
20	Architecture for Efficient String Dictionaries in E-Learning. Proceedings (mdpi), 2018, 2, 1251.	0.2	0
21	The Effect of Green Software: A Study of Impact Factors on the Correctness of Software. Sustainability, 2018, 10, 3471.	1.6	10
22	Text Categorization Improvement via User Interaction. Lecture Notes in Computer Science, 2018, , 265-275.	1.0	0
23	Collaborative Working Architecture for IoT-Based Applications. Sensors, 2018, 18, 1676.	2.1	20
24	An Ontology-Oriented Architecture for Dealing With Heterogeneous Data Applied to Telemedicine Systems. IEEE Access, 2018, 6, 41118-41138.	2.6	16
25	Detection of the Bee Queen Presence Using Sound Analysis. Lecture Notes in Computer Science, 2018, , 297-306.	1.0	22
26	A Proposal for a Distributed Computational Framework in IoT Context. Lecture Notes in Computer Science, 2017, , 194-200.	1.0	1
27	Distributed computational model for shared processing on Cyber-Physical System environments. Computer Communications, 2017, 111, 68-83.	3.1	28
28	Collaborative building of behavioural models based on internet of things. Computers and Electrical Engineering, 2017, 58, 385-396.	3.0	23
29	An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments. Sensors, 2017, 17, 2302.	2.1	132
30	A Computational Method for Enabling Teaching-Learning Process in Huge Online Courses and Communities. International Review of Research in Open and Distance Learning, 2017, 18, .	1.0	8
31	Internet of Things: A Review of Surveys Based on Context Aware Intelligent Services. Sensors, 2016, 16, 1069.	2.1	162
32	A hybrid integrated architecture for energy consumption prediction. Future Generation Computer Systems, 2016, 63, 131-147.	4.9	20
33	Big Data trends: Modelling, Management and Visualization. Expert Systems, 2016, 33, 362-363.	2.9	0
34	A Computational Architecture Based on RFID Sensors for Traceability in Smart Cities. Sensors, 2015, 15, 13591-13626.	2.1	43
35	Flexible Framework for Real-Time Embedded Systems Based on Mobile Cloud Computing Paradigm. Mobile Information Systems, 2015, 2015, 1-14.	0.4	17
36	A Novel Multidimensional Approach to Integrate Big Data in Business Intelligence. Journal of Database Management, 2015, 26, 14-31.	1.0	11

#	Article	IF	CITATIONS
37	SARASOM: a supervised architecture based on the recurrent associative SOM. Neural Computing and Applications, 2015, 26, 1103-1115.	3.2	2
38	Mathematical modelling of the lower urinary tract. Computer Methods and Programs in Biomedicine, 2013, 109, 323-338.	2.6	10
39	Semen Parameters Can Be Predicted from Environmental Factors and Lifestyle Using Artificial Intelligence Methods1. Biology of Reproduction, 2013, 88, 99.	1.2	49
40	Using GNG to improve 3D feature extraction—Application to 6DoF egomotion. Neural Networks, 2012, 32, 138-146.	3.3	17
41	Predicting seminal quality with artificial intelligence methods. Expert Systems With Applications, 2012, 39, 12564-12573.	4.4	93
42	First International Workshop on Modeling for Data-Intensive Computing. Lecture Notes in Computer Science, 2012, , 99-99.	1.0	0
43	Using 3D GNG-based reconstruction for 6DoF egomotion. , 2011, , .		2
44	Associative Self-Organizing Map., 2011,,.		6
45	Modelling of urological dysfunctions with neurological etiology by means of their centres involved. Applied Soft Computing Journal, 2011, 11, 4448-4457.	4.1	9
46	Predictions tasks with words and sequences: Comparing a novel recurrent architecture with the Elman network. , 2011, , .		0
47	Internal Simulation of Perceptions and Actions. Advances in Experimental Medicine and Biology, 2011, 718, 87-100.	0.8	1
48	Using support vector machines in diagnoses of urological dysfunctions. Expert Systems With Applications, 2010, 37, 4713-4718.	4.4	17
49	Decision Support System for the Diagnosis of Urological Dysfunctions Based on Fuzzy Logic. Advances in Intelligent and Soft Computing, 2010, , 425-433.	0.2	2
50	Application of artificial neural networks in the diagnosis of urological dysfunctions. Expert Systems With Applications, 2009, 36, 5754-5760.	4.4	56
51	Embedded system for diagnosing dysfunctions in the lower urinary tract., 2007,,.		5