
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eggshell, a new bio-filler for polypropylene composites. Materials Letters, 2007, 61, 4347-4350.	2.6	203
2	Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: Synthesis, characterization and fundamental properties. Composites Science and Technology, 2013, 84, 1-7.	7.8	193
3	NMR Study of Branched Polyethylenes Obtained with Combined Fe and Zr Catalysts. Macromolecules, 2002, 35, 339-345.	4.8	152
4	Copolymerization of ethylene with 1-hexene and 1-octene: correlation between type of catalyst and comonomer incorporated. Macromolecular Chemistry and Physics, 1995, 196, 3991-4000.	2.2	133
5	Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromolecular Chemistry and Physics, 2000, 201, 923-930.	2.2	113
6	Synthesis of Branched Polyethylene from Ethylene by Tandem Action of Iron and Zirconium Single Site Catalysts. Macromolecules, 2001, 34, 2411-2417.	4.8	104
7	Influence of the comonomer content on the thermal and dynamic mechanical properties of metallocene ethylene/1-octene copolymers. Polymer, 1999, 40, 5489-5495.	3.8	98
8	TiO2–SiO2 mixed oxides prepared by a combined sol–gel and polymer inclusion method. Microporous and Mesoporous Materials, 2004, 67, 195-203.	4.4	93
9	Toward Tailorâ€Made Biocide Materials Based on Poly(propylene)/Copper Nanoparticles. Macromolecular Rapid Communications, 2010, 31, 563-567.	3.9	82
10	Antimicrobial polymer composites with copper micro- and nanoparticles: Effect of particle size and polymer matrix. Journal of Bioactive and Compatible Polymers, 2015, 30, 366-380.	2.1	79
11	The influence of the comonomer in the copolymerization of ethylene with α-olefins using C2H4[ind]2ZrCl2/methylaluminoxane as catalyst system. Macromolecular Chemistry and Physics, 1996, 197, 3091-3098.	2.2	74
12	Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte. Electrochimica Acta, 2011, 58, 112-118.	5.2	73
13	Metallocenic Copolymers of Isotactic Propylene and 1-Octadecene: Crystalline Structure and Mechanical Behavior. Macromolecular Chemistry and Physics, 2005, 206, 1221-1230.	2.2	63
14	Synthesis and characterization of ethylene-1-hexene copolymers using homogeneous Ziegler-Natta catalysts. Polymer Bulletin, 1995, 35, 299-306.	3.3	52
15	Synthesis and properties coming from the copolymerization of propene with α-olefins using different metallocene catalysts. Polymer, 2005, 46, 1567-1574.	3.8	52
16	Influence of the graphite type on the synthesis of polypropylene/graphene nanocomposites. Journal of Polymer Science Part A, 2012, 50, 3598-3605.	2.3	52
17	Mechanical and Morphological Studies of Poly(propylene)â€Filled Eggshell Composites. Macromolecular Materials and Engineering, 2007, 292, 1027-1034.	3.6	47
18	Synthesis and characterization of copolymers of ethylene and 1-octadecene using therac-Et(Ind)2ZrCl2/MAO catalyst system. Macromolecular Chemistry and Physics, 1999, 200, 1306-1310.	2.2	45

#	Article	IF	CITATIONS
19	Comonomer Length Influence on the Structure and Mechanical Response of Metallocenic Polypropylenic Materials. Macromolecular Chemistry and Physics, 2008, 209, 2259-2267.	2.2	45
20	Syndiotactic polypropylene as potential material for the preparation of porous membranes via thermally induced phase separation (TIPS) process. Polymer, 2005, 46, 11582-11590.	3.8	43
21	Syndiotactic polypropylene and its copolymers with alpha-olefins. Effect of composition and length of comonomer. Polymer, 2005, 46, 12287-12297.	3.8	41
22	Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications. Journal of Nanomaterials, 2012, 2012, 1-8.	2.7	41
23	Effect of the comonomer content on the mechanical parameters and microhardness values in poly(ethylene-co-1-octadecene) synthesized by a metallocene catalyst. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 277-285.	2.1	39
24	Study of the morphology and mechanical properties of polypropylene composites with silica or rice-husk. Polymer International, 2005, 54, 730-734.	3.1	39
25	Structure characterization of copolymers of ethylene and 1-octadecene. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1440-1448.	2.1	38
26	Silica/clay organo-heterostructures to promote polyethylene–clay nanocomposites by in situ polymerization. Applied Catalysis A: General, 2013, 453, 142-150.	4.3	37
27	Rheological characterization of molten ethylene–α-olefin copolymers synthesized with Et[Ind]2ZrCl2/MAO catalyst. Polymer, 2001, 42, 9269-9279.	3.8	36
28	Use of PP Grafted with Itaconic Acid as a New Compatibilizer for PP/Clay Nanocomposites. Macromolecular Chemistry and Physics, 2006, 207, 1376-1386.	2.2	33
29	Polyethylene/graphene oxide composites toward multifunctional active packaging films. Composites Science and Technology, 2019, 184, 107888.	7.8	33
30	Effect of the polypropylene type on polymer–diluent phase diagrams and membrane structure in membranes formed via the TIPS processPart I. Metallocene and Ziegler–Natta polypropylenes. Journal of Membrane Science, 2005, 263, 146-153.	8.2	32
31	Barrier, mechanical and conductive properties of polycaprolactam nanocomposites containing carbon-based particles: Effect of the kind of particle. Polymer, 2017, 130, 10-16.	3.8	32
32	Catalytic activity during the preparation of PE/clay nanocomposites by <i>in situ</i> polymerization with metallocene catalysts. Journal of Applied Polymer Science, 2009, 113, 2368-2377.	2.6	29
33	The influence of the transition metal and the heteroatomic-bridge on the action of metallocene/methyl aluminoxane catalysts in ethylene polymerization and on the properties of the polymer. Macromolecular Rapid Communications, 1995, 16, 357-362.	3.9	27
34	Microporous membranes prepared via thermally induced phase separation fromÂmetallocenic syndiotactic polypropylenes. Polymer, 2009, 50, 2081-2086.	3.8	27
35	<i>In situ</i> formation of nanocomposites based on polyethylene and silica nanospheres. Journal of Applied Polymer Science, 2011, 119, 1771-1780.	2.6	27
36	Electro-mechanical actuation performance of SEBS/PU blends. Polymer, 2019, 171, 25-33.	3.8	27

#	Article	IF	CITATIONS
37	Tris(pyrazolyl)methane–chromium(III) complexes as highly active catalysts for ethylene polymerization. Journal of Molecular Catalysis A, 2006, 260, 70-76.	4.8	26
38	Study of the effect of the monomer pressure on the copolymerization of ethylene with 1-hexene. Journal of Applied Polymer Science, 1997, 64, 2567-2574.	2.6	24
39	Synthesis of nanosized ZSM-2 zeolite with potential acid catalytic properties. Microporous and Mesoporous Materials, 2009, 117, 118-125.	4.4	24
40	Ethylene polymerization using dealuminated ZSM-2 zeolite nanocrystals as an active metallocene catalyst support. Applied Catalysis A: General, 2008, 347, 223-233.	4.3	23
41	Polypropylene/clay nanocomposites: Effect of different clays and compatibilizers on their morphology. Journal of Applied Polymer Science, 2009, 112, 1278-1286.	2.6	23
42	High catalytic activity of SBA-15-supported metallocene toward ethylene polymerization: The effect of the support. Catalysis Communications, 2009, 10, 995-1001.	3.3	23
43	Polyethylene/reduced graphite oxide nanocomposites with improved morphology and conductivity. Polymer, 2015, 81, 79-86.	3.8	23
44	Use of SEBS/EPR and SBR/EPR as Binary Compatibilizers for PE/PP/PS/HIPS Blends: A Work Oriented to the Recycling of Thermoplastic Wastes. Macromolecular Materials and Engineering, 2007, 292, 1001-1011.	3.6	22
45	An efficient approach to the preparation of polyethylene magnetic nanocomposites. Polymer, 2016, 97, 131-137.	3.8	22
46	Kinetic study of the reaction between hydroxylated polybutadienes and isocyanates. 1. Reaction with tolylene diisocyanate (TDI). Journal of Polymer Science Part A, 1986, 24, 727-735.	2.3	21
47	The effect of reaction parameters on catalytic activity in the polymerization of ethylene using supported and unsupported metallocene catalysts. Applied Catalysis A: General, 1998, 166, 207-213.	4.3	21
48	Metallocene supported on a polyhedral oligomeric silsesquioxane-modified silica with high catalytic activity for ethylene polymerization. Journal of Polymer Science Part A, 2005, 43, 5465-5476.	2.3	21
49	Functionalization of polypropylene by grafting with itaconic acid. Macromolecular Rapid Communications, 1996, 17, 577-582.	3.9	20
50	The effect of the ethylene pressure on its reaction with 1-hexene, 1-octene and 4-methyl-1-pentene. Polymer Bulletin, 1996, 37, 469-474.	3.3	19
51	Chromium(III) complexes with terdentate 2,6-bis(azolylmethyl)pyridine ligands: Synthesis, structures and ethylene polymerization behavior. Journal of Organometallic Chemistry, 2009, 694, 2636-2641.	1.8	19
52	Preparation of aluminophosphate/polyethylene nanocomposite membranes and their gas permeation properties. Journal of Membrane Science, 2010, 358, 33-42.	8.2	19
53	Polyethylene Nanocomposites Obtained by in situ Polymerization via a Metallocene Catalyst Supported on Silica Nanospheres. Macromolecular Reaction Engineering, 2011, 5, 294-302.	1.5	19
54	Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites. Polymers, 2016, 8, 386.	4.5	19

#	Article	IF	CITATIONS
55	Development of multifunctional polymer nanocomposites with carbon-based hybrid nanostructures synthesized from ferrocene. European Polymer Journal, 2016, 75, 200-209.	5.4	19
56	Synthesis and characterization of polypropylene/iron encapsulated carbon nanotube composites with high magnetic response at room temperature. Polymer, 2017, 118, 68-74.	3.8	19
57	Dynamic-Mechanical Properties of Ethylene/α-Olefin Copolymers Prepared by a Metallocene Catalyst. Macromolecular Chemistry and Physics, 2001, 202, 172-179.	2.2	18
58	Use of Monomethyl Itaconate Grafted Poly(propylene)(PP) and Ethylene Propylene Rubber(EPR) as Compatibilizers for PP/EPR Blends. Macromolecular Materials and Engineering, 2003, 288, 875-885.	3.6	18
59	Mechanical and thermal properties of multiwalled carbon nanotube/polypropylene composites using itaconic acid as compatibilizer and coupling agent. Macromolecular Research, 2013, 21, 153-160.	2.4	18
60	13C-NMR study of ethylene/1-hexene and ethylene/1-octene copolymers obtained using homogeneous catalysts. Polymer Bulletin, 1995, 34, 599-604.	3.3	17
61	Sol–gel iron complex catalysts supported on TiO2 for ethylene polymerization. Journal of Molecular Catalysis A, 2004, 207, 155-161.	4.8	17
62	Acetamidine complexes as catalysts for ethylene polymerization. Journal of Organometallic Chemistry, 2009, 694, 717-725.	1.8	17
63	Titania coatings on high and low surface area spherical silica particles by a sol–gel method. Journal of Materials Chemistry, 2000, 10, 2818-2822.	6.7	16
64	Study of the polymerization of 1-octadecene with different rnetallocene catalysts. Polymer Bulletin, 2002, 49, 273-280.	3.3	16
65	Influence of grafted polypropylene on the mechanical properties of mineral-filled polypropylene composites. Journal of Applied Polymer Science, 2007, 103, 2343-2350.	2.6	16
66	Modification of poly(propylene) through grafting with dimethyl itaconate in solution. Macromolecular Chemistry and Physics, 1998, 199, 2495-2500.	2.2	14
67	Synthetic layered and tube-like silica nanoparticles as novel supports for metallocene catalysts in ethylene polymerization. Applied Catalysis A: General, 2011, 407, 181-187.	4.3	14
68	The Mechanism of Ethylene Polymerization Reaction Catalyzed by Group IVB Metallocenes. A Rational Analysis Through the Use of Reaction Force. Journal of Physical Chemistry C, 2012, 116, 21318-21325.	3.1	14
69	Effect of morphology on the permeability, mechanical and thermal properties of polypropylene/SiO ₂ nanocomposites. Polymer International, 2015, 64, 1245-1251.	3.1	14
70	Synthesis of highâ€density polyethylene/rGO NTâ€Fe nanocomposites with outstanding magnetic and electrical properties. Journal of Applied Polymer Science, 2017, 134, 45382.	2.6	14
71	Behavior of poly(ethylene-co-olefin) polymers as elastomeric materials. Journal of Applied Polymer Science, 2004, 92, 3008-3015.	2.6	13
72	The effect of nanospheres on the permeability of PA6/SiO ₂ nanocomposites. Polymer International, 2011, 60, 1600-1606.	3.1	13

#	Article	IF	CITATIONS
73	Results coming from homogeneous and supported metallocene catalysts in the homo- and copolymerization of olefins. Macromolecular Symposia, 2002, 189, 111-126.	0.7	12
74	Cyclopalladated complexes derivates of phenylhydrazones and their use as catalysts in ethylene polymerization. Journal of Molecular Catalysis A, 2005, 226, 291-295.	4.8	12
75	Ethylene–propylene-α-olefin terpolymers thermal and mechanical properties. Journal of Applied Polymer Science, 2007, 104, 3827-3836.	2.6	12
76	Thermal oxidation of metallocene ethylene-1-olefin copolymer films during one year oven aging. Polymer Degradation and Stability, 2008, 93, 1947-1951.	5.8	12
77	PREPARATION OF NANOCOMPOSITES BY IN SITU POLIMERIZATION. Journal of the Chilean Chemical Society, 2008, 53, .	1.2	12
78	A study of the synthesis and characterization of ethylene/dicyclopentadiene copolymers using a metallocene catalyst. European Polymer Journal, 2009, 45, 102-106.	5.4	12
79	SYNERGIC EFFECT OF TWO INORGANIC FILLERS ON THE MECHANICAL AND THERMAL PROPERTIES OF HYBRID POLYPROPYLENE COMPOSITES. Journal of the Chilean Chemical Society, 2014, 59, 2468-2473.	1.2	12
80	Synthesis, characterization and properties of poly(propylene-1-octene)/graphite nanosheet nanocomposites obtained by in situ polymerization. Polymer, 2015, 65, 134-142.	3.8	12
81	New architecture of supported metallocene catalysts for alkene polymerization. Journal of Polymer Science Part A, 2007, 45, 5480-5486.	2.3	11
82	Synthesis, characterization, and reactivity studies in ethylene polymerization of cyclometalated palladium(II) complexes containing terdentate ligands with N,C,N-donors. Journal of Coordination Chemistry, 2009, 62, 2772-2781.	2.2	11
83	Nickel pre-catalysts bearing [(N)-imidoylamidine] ligands; influence of the presence of pyridine and pentafluorophenyl groups in ligand backbone on the reactivity in ethylene polymerizations. Journal of Organometallic Chemistry, 2012, 700, 147-153.	1.8	10
84	Thermally Reduced Graphene Oxide/Thermoplastic Polyurethane Nanocomposites: Mechanical and Barrier Properties. Polymers, 2021, 13, 85.	4.5	10
85	Studies on the Copolymerization of Ethylene and α-Olefins with Ziegler- Natta Catalyst Supported on Alumina or Magnesium Chloride. Studies in Surface Science and Catalysis, 1986, 25, 419-429.	1.5	9
86	Structural evaluation of copolymers of ethylene and 1-octadecene by using the temperature rising elution fractionation technique. Journal of Applied Polymer Science, 2001, 79, 221-227.	2.6	9
87	Study of the influence of the reaction parameters on the composition of the metallocene-catalyzed ethylene copolymers using temperature rising elution fractionation and13C nuclear magnetic resonance. Journal of Applied Polymer Science, 2002, 84, 155-163.	2.6	9
88	Gammaâ€irradiated metallocenic polyethylene and ethyleneâ€1â€hexene copolymers. Journal of Applied Polymer Science, 2010, 117, 290-301.	2.6	9
89	Syndiotactic poly(propene-co-norbornene): Synthesis and properties at low norbornene incorporation. Polymer, 2010, 51, 4627-4631.	3.8	9
90	SEBS-Grafted Itaconic Acid as Compatibilizer for Elastomer Nanocomposites Based on BaTiO3 Particles. Polymers, 2020, 12, 643.	4.5	9

#	Article	IF	CITATIONS
91	Polymerization of styrene by diphenylzinc-additive systems. Polymer Bulletin, 1996, 37, 13-19.	3.3	8
92	Highly porous silica networks derived from gelatin/siloxane hybrids prepared starting from sodium metasilicate. Journal of Non-Crystalline Solids, 2004, 347, 273-278.	3.1	8
93	Nonisothermal crystallization and melting behavior of syndiotactic polypropylenes of different microstructure. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 798-806.	2.1	8
94	Polypropylene Nanocomposites Obtained by <i>In Situ</i> Polymerization Using Metallocene Catalyst: Influence of the Nanoparticles on the Final Polymer Morphology. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	8
95	Study of the Influence of Magnetite Nanoparticles Supported on Thermally Reduced Graphene Oxide as Filler on the Mechanical and Magnetic Properties of Polypropylene and Polylactic Acid Nanocomposites. Polymers, 2021, 13, 1635.	4.5	8
96	Effect of Tacticity on the Structure of Poly(1-octadecene). Macromolecular Chemistry and Physics, 2004, 205, 1877-1885.	2.2	7
97	Propylene/1-Hexene Copolymer as a Tailor-Made Poly(propylene) for Membrane Preparation via the Thermally Induced Phase Separation (TIPS) Process. Macromolecular Materials and Engineering, 2006, 291, 155-161.	3.6	7
98	Dynamic Model of the Copolymerization of Propylene and 1-Hexene with the Me2Si(2-Me-Ind)2ZrCl2 Catalytic System: Effect of 1-Hexene Concentration. Polymer-Plastics Technology and Engineering, 2006, 45, 1233-1241.	1.9	7
99	Syndiotactic polypropylene copolymer membranes and their performance for oxygen separation. Journal of Membrane Science, 2010, 348, 34-40.	8.2	7
100	Metallocene supported on a polyhedral oligomeric silsesquioxaneâ€nodified silica: Structural characterization and catalytic activity for ethylene polymerization. Journal of Polymer Science Part A, 2010, 48, 5938-5944.	2.3	7
101	Preparation of polypropyleneâ€based nanocomposites using nanosized <scp>MCM</scp> â€41 as support and <i>in situ</i> polymerization. Polymer International, 2016, 65, 320-326.	3.1	7
102	Hafnocene catalyst for polyethylene and its nanocomposites with SBA-15 by in situ polymerization: Immobilization approaches, catalytic behavior and properties evaluation. European Polymer Journal, 2016, 85, 298-312.	5.4	7
103	Optimization of olefin copolymerization: effects of reaction parameters on catalytic activity and properties. Polymer Bulletin, 1998, 40, 103-109.	3.3	6
104	Polymerization and copolymerization of styrene by Ph2Zn-metallocene-MAO initiator systems Macromolecular Symposia, 2001, 168, 31-42.	0.7	6
105	Study on the copolymerization of propylene with norbornene using metallocene catalysts. Polymer Bulletin, 2012, 69, 925-935.	3.3	6
106	Effect of Shortâ€Chain Branching on the Melt Behavior of Polypropylene Under Smallâ€Amplitude Oscillatory Shear Conditions. Macromolecular Chemistry and Physics, 2013, 214, 107-116.	2.2	6
107	Polymerization of styrene by diphenylzinc-additive systems. Part IX. New experiments with Ph2Zn-Met-MAO systems. Polymer International, 1999, 48, 681-684.	3.1	5
108	Use of Functionalized Metallocene Copolymers from Ethylene and Polar Olefins as Compatibilizers for Low-Density-Polyethylene/Starch and Low-Density-Polyethylene/Dextran Blends. Macromolecular Materials and Engineering, 2006, 291, 962-971.	3.6	5

#	Article	IF	CITATIONS
109	Synthesis, characterization and ethylene polymerization activity of titanium, zirconium and hafnium compounds derivatives from symmetric oxamide. Polyhedron, 2007, 26, 4321-4327.	2.2	5
110	Preparation and characterization of porous microfiltration membranes by using tailor-made propylene/1-octadecene copolymers. Desalination, 2008, 228, 150-158.	8.2	5
111	Evaluation of catalytic activity in ethylene polymerization and ethylene/10-undecen-1-ol copolymerization of new orthopalladated complexes derived from tridentade ligands [C,N,S]. Applied Catalysis A: General, 2012, 417-418, 1-5.	4.3	5
112	POLYMERIZATION OF STYRENE BY DIPHENYLZINC-ADDITIVE SYSTEMS. PART X. HOMO- AND COPOLYMERIZATION OF STYRENE USING Ph2Zn - METALLOCENE - MAO SYSTEMS. Journal of the Chilean Chemical Society, 2000, 45, .	0.1	5
113	Dynamic Model of the Homopolymerization of Propylene with the Me ₂ Si(2-Me-Ind) ₂ ZrCl Catalyst: The Effect of Reaction Variables. Polymer-Plastics Technology and Engineering, 2006, 45, 85-94.	1.9	4
114	Styrene copolymerization using a metallocene-MAO initiator system. Homo- and copolymerization of styrene with some cycloalkenes. Polymer Bulletin, 2013, 70, 2111-2123.	3.3	4
115	Effect of thermally reduced graphene oxides obtained at different temperatures on the barrier and mechanical properties of polypropylene/TRGO and polyamideâ€6/TRGO nanocomposites. Polymer Composites, 2019, 40, E1746-E1756.	4.6	4
116	Immobilized catalyst system in hydrogenated hydroxylated polybutadiene for ethylene polymerization. Journal of Polymer Science, Polymer Letters Edition, 1984, 22, 25-30.	0.4	3
117	Effect of Polymer Structure and Incorporation of Nanoparticles on the Behavior of Syndiotactic Polypropylenes. Macromolecular Chemistry and Physics, 2013, 214, 2567-2578.	2.2	3
118	Influence of the Polymeric Matrix and Thermal Treatment on the Properties of Polyolefinâ€Graphite Nanosheets Nanocomposites. Macromolecular Materials and Engineering, 2016, 301, 1503-1512.	3.6	3
119	Studies on homo- and copolymerizations of long-chained α-olefins over metallocene catalysts. Polimery, 2000, 45, 339-343.	0.7	3
120	Preparation of nanocomposites based on styrene/(p-methylstyrene) and SiO2 nanoparticles, through a metallocene–MAO initiating system. Polymer Bulletin, 2019, 76, 1041-1058.	3.3	2
121	ESTUDIO DEL COMPORTAMIENTO CATALITICO DE LA HOMO Y COPOLIMERIZACION DE 1-OCTADECENO CON CATALIZADORES METALOCENOS RACEMICOS rac-Et(Ind)2ZrCl2 Y rac-Me2Si(Ind)2ZrCl2. Journal of the Chilean Chemical Society, 1999, 44, .	0.1	2
122	A study of the effect of styrene concentration on the molecular weight of polypropylene produced using metallocene catalysts. Polymer International, 2011, 60, 839-844.	3.1	1
123	Preparation of poly(ethylene-co-dicyclopentadiene) copolymers and a study on their post-polymerization epoxidation. Polymer Bulletin, 2013, 70, 117-129.	3.3	1
124	Metallocene Catalysts Supported on Porous Oxides Prepared by Sol-Gel Technique for Polymerization of Olefins. , 2003, , 3-11.		0