George Zograf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles. Nano Letters, 2017, 17, 3047-3053.	9.1	150
2	Light-Emitting Halide Perovskite Nanoantennas. Nano Letters, 2018, 18, 1185-1190.	9.1	132
3	Resonant Nonplasmonic Nanoparticles for Efficient Temperature-Feedback Optical Heating. Nano Letters, 2017, 17, 2945-2952.	9.1	118
4	Metalâ€Dielectric Nanocavity for Realâ€Time Tracing Molecular Events with Temperature Feedback. Laser and Photonics Reviews, 2018, 12, 1700227.	8.7	45
5	Purcell effect in active diamond nanoantennas. Nanoscale, 2018, 10, 8721-8727.	5.6	38
6	Temperature-feedback direct laser reshaping of silicon nanostructures. Applied Physics Letters, 2017, 111, .	3.3	35
7	Opto-thermally controlled beam steering in nonlinear all-dielectric metastructures. Optics Express, 2021, 29, 37128.	3.4	26
8	Influence of partial shape memory deformation on the burst character of its recovery in heated Ni–Fe–Ga–Co alloy crystals. Technical Physics Letters, 2016, 42, 399-402.	0.7	23
9	Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonances. Nanoscale, 2019, 11, 17800-17806.	5.6	16
10	Local Crystallization of a Resonant Amorphous Silicon Nanoparticle for the Implementation of Optical Nanothermometry. JETP Letters, 2018, 107, 699-704.	1.4	14
11	Synergistic Effect of Plasma and Laser Processes in Liquid for Alloyed-Nanoparticle Synthesis. Physical Review Applied, 2020, 13, .	3.8	13
12	Nonlinear optical heating of all-dielectric super-cavity: efficient light-to-heat conversion through giant thermorefractive bistability. Nanophotonics, 2022, 11, 3981-3991.	6.0	10
13	Manipulation Technique for Precise Transfer of Single Perovskite Nanoparticles. Nanomaterials, 2020, 10, 1306.	4.1	8
14	Electrically driven metal and all-dielectric nanoantennas for plasmon polariton excitation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 244, 106825.	2.3	8
15	Anomalous stress-strain behaviour in Ni49Fe18Ga27Co6 crystals compressed along [110]. Materials Today: Proceedings, 2017, 4, 4807-4813.	1.8	6
16	Revealing Low-Radiative Modes of Nanoresonators with Internal Raman Scattering. JETP Letters, 2019, 110, 25-30.	1.4	5
17	Enhanced Raman Scattering for Probing Nearâ€Field Distribution in Allâ€Dielectric Nanostructures. Advanced Photonics Research, 2021, 2, 2000139.	3.6	5
18	Thermo-optical reshaping of second-harmonic emission from dimer all-dielectric nanoresonators. Optics Letters, 2022, 47, 1992.	3.3	5

GEORGE ZOGRAF

#	Article	IF	CITATIONS
19	Laser printing of Au/Si core-shell nanoparticles. Journal of Physics: Conference Series, 2016, 741, 012119.	0.4	4
20	Modeling of formation mechanism and optical properties of Si/Au core-shell nanoparticles. , 2016, , .		3
21	Coating of Au nanoparticle by Si shell for enhanced local heating. Journal of Physics: Conference Series, 2017, 929, 012072.	0.4	2
22	Gap size impact on metal-dielectric nanocavity heater properties. AIP Conference Proceedings, 2017, , .	0.4	0
23	Resonant optical properties of crystalline silicon nanoparticles fabricated by laser ablation-based methods. AIP Conference Proceedings, 2017, , .	0.4	0
24	Metal-dielectric nanocavity as a versatile optical sensing platform. , 2017, , .		0
25	Control of luminescence in resonant nanodiamonds with NV-centers. , 2017, , .		0
26	2D thermal map calculation and experimental study for optical heating of resonant non-plasmonic nanoparticles. , 2017, , .		0
27	Nanoscale optical high-temperature sensor. , 2017, , .		0
28	Highly efficient optical heating of non-plasmonic nananoparticles. , 2017, , .		0
29	Multifunctional sensing with hybrid nanophotonic structures. , 2017, , .		0
30	Zero phonon line enhancement by Mie-type resonances of nanodiamonds with nitrogen-vacancy centers. , 2017, , .		0
31	Hybrid nanocavity for molecular sensing. , 2017, , .		0
32	Nanocrystalline resonant silicon nanoparticle for highly efficient second harmonic generation. , 2017, , .		0
33	Photoluminescence spectral position shift governed by optical heating of perovskite resonant nanoparticles. Journal of Physics: Conference Series, 2018, 1092, 012179.	0.4	0
34	Light induced temperature decrease of semiconductor nanoparticle. Journal of Physics: Conference Series, 2020, 1461, 012179.	0.4	0
35	Doping of resonant silicon nanodisks for efficient optical heating in the near-infrared range. Journal of Physics: Conference Series, 2020, 1461, 012201.	0.4	Ο