
Oleksiy V Klymenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559320/publications.pdf Version: 2024-02-01

#	ARTICLE Voltammetry of Oxygen in the Room-Temperature ionic Liquids 1-Ethyl-3-methylimidazolium	IF	CITATIONS
1	Bis((trifluoromethyl)sulfonyl)imide and Hexyltriethylammonium Bis((trifluoromethyl)sulfonyl)imide: One-Electron Reduction To Form Superoxide. Steady-State and Transient Behavior in the Same Cyclic Voltammogram Resulting from Widely Different Diffusion Coefficients of Oxygen and Superoxide.	1.1	248
2	Electroreduction of Oxygen in a Series of Room Temperature Ionic Liquids Composed of Group 15-Centered Cations and Anions. Journal of Physical Chemistry B, 2004, 108, 7878-7886.	1.2	216
3	A Comparative Electrochemical Study of Diffusion in Room Temperature Ionic Liquid Solvents versus Acetonitrile. ChemPhysChem, 2005, 6, 526-533.	1.0	137
4	Oxidation of N,N,N′,N′-tetraalkyl-para-phenylenediamines in a series of room temperature ionic liquids incorporating the bis(trifluoromethylsulfonyl)imide anion. Journal of Electroanalytical Chemistry, 2003, 556, 179-188.	1.9	125
5	Double potential step chronoamperometry at microdisk electrodes: simulating the case of unequal diffusion coefficients. Journal of Electroanalytical Chemistry, 2004, 571, 211-221.	1.9	88
6	Kinetic Analysis of the Reaction between Electrogenerated Superoxide and Carbon Dioxide in the Room Temperature Ionic Liquids 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and Hexyltriethylammonium Bis(trifluoromethylsulfonyl)imide. Journal of Physical Chemistry B, 2004, 108, 3947-3954.	1.2	81
7	Marcus theory of outer-sphere heterogeneous electron transfer reactions: High precision steady-state measurements of the standard electrochemical rate constant for ferrocene derivatives in alkyl cyanide solvents. Journal of Electroanalytical Chemistry, 2005, 580, 78-86.	1.9	61
8	A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Principle. Electrochemistry Communications, 2010, 12, 1170-1173.	2.3	58
9	Marcus Theory of Outer-Sphere Heterogeneous Electron Transfer Reactions:Â Dependence of the Standard Electrochemical Rate Constant on the Hydrodynamic Radius from High Precision Measurements of the Oxidation of Anthracene and Its Derivatives in Nonaqueous Solvents Using the High-Speed Channel Electrode. Journal of the American Chemical Society. 2004. 126. 6185-6192.	6.6	57
10	Uncovering the Missing Link between Molecular Electrochemistry and Electrocatalysis: Mechanism of the Reduction of Benzyl Chloride at Silver Cathodes. ChemElectroChem, 2014, 1, 227-240.	1.7	51
11	The electro-oxidation of N,N-dimethyl-p-toluidine in acetonitrile:. Journal of Electroanalytical Chemistry, 2002, 531, 33-42.	1.9	38
12	A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Application to model mechanisms. Electrochemistry Communications, 2010, 12, 1165-1169.	2.3	34
13	A New Approach for the Simulation of Electrochemiluminescence (ECL). ChemPhysChem, 2013, 14, 2237-2250.	1.0	34
14	Marcus Theory for Outer-Sphere Heterogeneous Electron Transfer:Â Predicting Electron-Transfer Rates for Quinones. Journal of Physical Chemistry B, 2004, 108, 13047-13051.	1.2	32
15	Evidence for Specific Solvation of Two Halocarbene Amides. Journal of the American Chemical Society, 2004, 126, 5750-5762.	6.6	31
16	Numerical simulation of partially blocked electrodes under cyclic voltammetry conditions: influence of the block unit geometry on the global electrochemical properties. Journal of Electroanalytical Chemistry, 2005, 577, 211-221.	1.9	30
17	The high speed channel electrode applied to heterogeneous kinetics: the oxidation of 1,4-phenylenediamines and related species in acetonitrile. Journal of Electroanalytical Chemistry, 2002, 534, 151-161.	1.9	29
18	New theoretical insights into the competitive roles of electron transfers involving adsorbed and homogeneous phases. Journal of Electroanalytical Chemistry, 2013, 688, 320-327.	1.9	29

OLEKSIY V KLYMENKO

#	Article	IF	CITATIONS
19	Importance of Correct Prediction of Initial Concentrations in Voltammetric Scans: Contrasting Roles of Thermodynamics, Kinetics, and Natural Convection. Analytical Chemistry, 2012, 84, 2792-2798.	3.2	27
20	The theory of electrodeposition in the presence of forced convection:. Journal of Electroanalytical Chemistry, 2002, 534, 13-17.	1.9	26
21	An improved configuration for simultaneous electrochemical ESR studies: a tubular electrode in a cylindrical cavity. Physical Chemistry Chemical Physics, 2004, 6, 4018.	1.3	24
22	Experimental Validation of Marcus Theory for Outer-Sphere Heterogeneous Electron-Transfer Reactions: The Oxidation of Substituted 1,4-Phenylenediamines. ChemPhysChem, 2004, 5, 1234-1240.	1.0	24
23	Molecular electrochemistry and electrocatalysis: a dynamic view. Molecular Physics, 2014, 112, 1273-1283.	0.8	24
24	Sobol' indices for problems defined in non-rectangular domains. Reliability Engineering and System Safety, 2017, 167, 218-231.	5.1	24
25	Modelling homogeneous kinetics in the double channel electrode. Journal of Electroanalytical Chemistry, 2005, 576, 333-338.	1.9	23
26	The application of fast scan cyclic voltammetry to the high speed channel electrode. Journal of Electroanalytical Chemistry, 2003, 542, 23-32.	1.9	22
27	Influence of the block geometry on the voltammetric response of partially blocked electrodes: Application to interfacial liquid–liquid kinetics of aqueous vitamin B12S with random arrays of femtolitre microdroplets of dibromocyclohexane. Journal of Electroanalytical Chemistry, 2005, 580, 265-274.	1.9	22
28	Constrained global sensitivity analysis for bioprocess design space identification. Computers and Chemical Engineering, 2019, 125, 558-568.	2.0	22
29	â€~kinfitsim'—a software to fit kinetic data to a user selected mechanism. Computers & Chemistry, 2002, 26, 379-386.	1.2	21
30	A Novel Approach to the Simulation of Electrochemical Mechanisms Involving Acute Reaction Fronts at Disk and Band Microelectrodes. ChemPhysChem, 2012, 13, 845-859.	1.0	21
31	In Situ and Online Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based upon Microelectrochemistry: Concept, Theory, and Validation. ChemPhysChem, 2005, 6, 1581-1589.	1.0	20
32	Theoretical study of the EE reaction mechanism with comproportionation and different diffusivities of reactants. Electrochemistry Communications, 2010, 12, 1378-1382.	2.3	20
33	Strong and Unexpected Effects of Diffusion Rates on the Generation of Electrochemiluminescence by Amine/Transitionâ€Metal(II) Systems. ChemElectroChem, 2015, 2, 811-818.	1.7	20
34	Time-Dependent Diffusionâ^'Migration at Cylindrical and Spherical Microelectrodes:Â Steady- and Quasi-Steady-State Analytical Solution Can Be Used under Transient Conditions. Analytical Chemistry, 2007, 79, 6341-6347.	3.2	19
35	Mass transport limited currents at the tubular electrode. Journal of Electroanalytical Chemistry, 2005, 575, 329-337.	1.9	18
36	Reconstruction of hydrodynamic flow profiles in a rectangular channel using electrochemical methods of analysis. Electrochimica Acta, 2007, 53, 1100-1106.	2.6	18

Oleksiy V Klymenko

#	Article	IF	CITATIONS
37	The Electrochemical Oxidation of N,N-Diethyl-p-Phenylenediamine in DMF and Analytical Applications. Part I: Mechanistic Study. Electroanalysis, 2003, 15, 949-960.	1.5	16
38	Theory and Simulation of Diffusionâ^'Reaction into Nano- and Mesoporous Structures. Experimental Application to Sequestration of Mercury(II). Analytical Chemistry, 2008, 80, 3229-3243.	3.2	16
39	Mathematical modelling and numerical simulation of adsorption processes at microdisk electrodes. Journal of Electroanalytical Chemistry, 2005, 574, 217-237.	1.9	15
40	Mass transport corrected Tafel analysis for electrochemically reversible systems of complex stoichiometry. Journal of Electroanalytical Chemistry, 2004, 571, 207-210.	1.9	14
41	In situ and Online Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based upon Microelectrochemistry: Optimization of Electrode Locations. ChemPhysChem, 2006, 7, 482-487.	1.0	14
42	Modelling the osmotic behaviour of human mesenchymal stem cells. Biochemical Engineering Journal, 2019, 151, 107296.	1.8	14
43	Liquid–liquid processes and kinetics in acoustically emulsified media. Physical Chemistry Chemical Physics, 2003, 5, 1652-1656.	1.3	13
44	Modelling release of nitric oxide in a slice of rat's brain: describing stimulated functional hyperemia with diffusion-reaction equations. Mathematical Medicine and Biology, 2006, 23, 27-44.	0.8	13
45	Hydrodynamics and Mass Transport in Wall-Tube and Microjet Electrodes: An Experimental Evaluation of Current Theory. Journal of Physical Chemistry B, 2003, 107, 13649-13660.	1.2	12
46	Heterogeneous Kinetics of the Dissolution of an Inorganic Salt, Potassium Carbonate, in an Organic Solvent, Dimethylformamide. Journal of Physical Chemistry B, 2005, 109, 8263-8269.	1.2	12
47	An electrochemical study of the oxidation of 1,3,5-Tris[4-[(3-methylphenyl)phenylamino]phenyl]benzene. Journal of Electroanalytical Chemistry, 2004, 563, 191-202.	1.9	11
48	Reactions at the Solidâ^'Liquid Interface:Â Surface-Controlled Dissolution of Solid Particles. The Dissolution of Potassium Bicarbonate in Dimethylformamide. Journal of Physical Chemistry B, 2005, 109, 2862-2872.	1.2	11
49	Capacitive and Solution Resistance Effects on Voltammetric Responses at a Disk Microelectrode Covered with a Self-Assembled Monolayer in the Presence of Electron Hopping. Analytical Chemistry, 2009, 81, 8545-8556.	3.2	11
50	Finite element simulation of electrochemically reversible, quasi-reversible and irreversible linear sweep voltammetry at the wall tube electrode. Journal of Electroanalytical Chemistry, 2002, 531, 25-31.	1.9	10
51	The Electrochemically Initiated Reaction of Sulfide with N,N-Diethyl-p-phenylenediamine in Dimethylformamide. Part II: Implications for Sensing Strategies. Electroanalysis, 2003, 15, 961-968.	1.5	10
52	Electrochemical Determination of Flow Velocity Profile in a Microfluidic Channel from Steady-State Currents: Numerical Approach and Optimization of Electrode Layout. Analytical Chemistry, 2009, 81, 7667-7676.	3.2	10
53	Physics and flame morphology of supersonic spontaneously combusting hydrogen spouting into air. Renewable Energy, 2022, 196, 959-972.	4.3	10
54	Comparative solubilisation of potassium carbonate, sodium bicarbonate and sodium carbonate in hot dimethylformamide: application of cylindrical particle surface-controlled dissolution theory. Physical Chemistry Chemical Physics, 2006, 8, 633-641.	1.3	9

Oleksiy V Klymenko

#	Article	IF	CITATIONS
55	Fast scan linear sweep voltammetry at a high-speed wall-tube electrode. Journal of Electroanalytical Chemistry, 2003, 557, 99-107.	1.9	8
56	Diffusion with Moving Boundary on Spherical Surfaces. ChemPhysChem, 2009, 10, 1593-1602.	1.0	8
57	Photoelectrochemistry of bromonitrobenzenes: mechanism and photoelectrochemically-induced halex reactions. Journal of Electroanalytical Chemistry, 2002, 533, 33-70.	1.9	7
58	Confocal Microscopy Imaging of Electrochemiluminescence at Double Band Microelectrode Assemblies: Numerical Solution of the Inverse Optical Problem. ChemPhysChem, 2007, 8, 1664-1676.	1.0	7
59	In Situ and On-Line Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based on Microelectrochemistry: Optimization of Channel Geometrical Parameters for Best Performance of Flow Profile Reconstruction. ChemPhysChem, 2007, 8, 1870-1874.	1.0	7
60	A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution under spherical or cylindrical diffusion. Russian Journal of Electrochemistry, 2012, 48, 593-599.	0.3	7
61	Theory of Longâ€Range Diffusion of Proteins on a Spherical Biological Membrane: Application to Protein Cluster Formation and Actinâ€Comet Tail Growth. ChemPhysChem, 2009, 10, 1586-1592.	1.0	6
62	Optimisation of ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses. Wellcome Open Research, 2017, 2, 97.	0.9	6
63	Electrochemical Determination of Sulfide at High Temperatures via Its Electrochemically Initiated Reaction with Diethyl-p-phenylenediamine in Dimethylformamide. Electroanalysis, 2004, 16, 337-344.	1.5	5
64	Experimental and Theoretical Study of the Surface-Controlled Dissolution of Cylindrical Particles. Application to Solubilization of Potassium Hydrogen Carbonate in Hot Dimethylformamide. Journal of Physical Chemistry B, 2005, 109, 20786-20793.	1.2	5
65	Balancing accuracy and complexity in optimisation models of distributed energy systems and microgrids with optimal power flow: A review. Sustainable Energy Technologies and Assessments, 2022, 52, 102066.	1.7	5
66	Replies to comments contained in "The True History of Adaptive Grids in Electrochemical Simulations― by D. Britz [Electrochim. Acta 56 (2011) 4420–4421]. Electrochimica Acta, 2011, 56, 4422-4423.	2.6	4
67	Designing an Artificial Golgi reactor to achieve targeted glycosylation of monoclonal antibodies. AICHE Journal, 2016, 62, 2959-2973.	1.8	4
68	Theoretical Insights in ECL. , 2017, , 215-256.		3
69	Constrained Global Sensitivity Analysis: Sobol' indices for problems in non-rectangular domains. Computer Aided Chemical Engineering, 2017, , 151-156.	0.3	2
70	Global Sensitivity Analysis for Design and Operation of Distributed Energy Systems. Computer Aided Chemical Engineering, 2020, 48, 1519-1524.	0.3	2
71	Levels of Approximation for the Optimal Design of Distributed Energy Systems. Computer Aided Chemical Engineering, 2021, , 1403-1408.	0.3	2
72	Theory and computational study of electrophoretic ion separation and focusing in microfluidic channels. Nonlinear Analysis: Modelling and Control, 2012, 17, 431-447.	1.1	2

#	Article	IF	CITATIONS
73	Dull or bright you still get electric delight: A new approach to the design of all-weather panels. Computer Aided Chemical Engineering, 2018, , 211-216.	0.3	1
74	Numerical modelling of the interaction between eccrine sweat and textile fabric for the development of smart clothing. International Journal of Clothing Science and Technology, 2020, 32, 761-774.	0.5	1
75	In situ and Online Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based upon Microelectrochemistry: Optimization of Electrode Locations. ChemPhysChem, 2006, 7, 779-779.	1.0	Ο
76	Design Space Approximation with Gaussian Processes. Computer Aided Chemical Engineering, 2021, 50, 905-911.	0.3	0
77	Application of Machine Learning and Global Sensitivity Analysis for Identification and Visualization of Design Space. Computer Aided Chemical Engineering, 2021, 50, 875-881.	0.3	Ο