Concha Nieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559149/publications.pdf

Version: 2024-02-01

39 papers 2,289 citations

236833 25 h-index 302012 39 g-index

40 all docs

40 docs citations

40 times ranked

3914 citing authors

#	Article	IF	CITATIONS
1	CD28 is expressed by macrophages with antiâ€inflammatory potential and limits their Tâ€cell activating capacity. European Journal of Immunology, 2021, 51, 824-834.	1.6	4
2	5-HT2B Receptor on Macrophages: What for?. Receptors, 2021, , 99-130.	0.2	3
3	Interactions of the Streptococcus pneumoniae Toxin-Antitoxin RelBE Proteins with Their Target DNA. Microorganisms, 2021, 9, 851.	1.6	2
4	MAFB and MAF Transcription Factors as Macrophage Checkpoints for COVID-19 Severity. Frontiers in Immunology, 2020, $11,603507$.	2.2	19
5	Growth Hormone Reprograms Macrophages toward an Anti-Inflammatory and Reparative Profile in an MAFB-Dependent Manner. Journal of Immunology, 2020, 205, 776-788.	0.4	14
6	Serotonin (5-HT) Shapes the Macrophage Gene Profile through the 5-HT2B–Dependent Activation of the Aryl Hydrocarbon Receptor. Journal of Immunology, 2020, 204, 2808-2817.	0.4	24
7	MMP-12, Secreted by Pro-Inflammatory Macrophages, Targets Endoglin in Human Macrophages and Endothelial Cells. International Journal of Molecular Sciences, 2019, 20, 3107.	1.8	51
8	The Streptococcus pneumoniae yefM-yoeB and relBE Toxin-Antitoxin Operons Participate in Oxidative Stress and Biofilm Formation. Toxins, 2018, 10, 378.	1.5	34
9	The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages. Frontiers in Immunology, 2018, 9, 31.	2.2	18
10	Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis. Scientific Reports, 2017, 7, 14761.	1.6	43
11	Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages. Journal of Immunology, 2016, 196, 1327-1337.	0.4	49
12	Macrophages from the synovium of active rheumatoid arthritis exhibit an activin Aâ€dependent proâ€inflammatory profile. Journal of Pathology, 2015, 235, 515-526.	2.1	138
13	CCL2 Shapes Macrophage Polarization by GM-CSF and M-CSF: Identification of CCL2/CCR2-Dependent Gene Expression Profile. Journal of Immunology, 2014, 192, 3858-3867.	0.4	364
14	Serotonin Skews Human Macrophage Polarization through HTR2B and HTR7. Journal of Immunology, 2013, 190, 2301-2310.	0.4	168
15	Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells. Blood, 2013, 121, e108-e117.	0.6	37
16	The toxinâ€"antitoxin proteins relBE <i>2Spn</i> of <i>Streptococcus pneumoniae</i> : Characterization and association to their DNA target. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1834-1846.	1.5	12
17	The Prolyl Hydroxylase PHD3 Identifies Proinflammatory Macrophages and Its Expression Is Regulated by Activin A. Journal of Immunology, 2012, 189, 1946-1954.	0.4	51
18	Construction of a plasmid vector based on the pMV158 replicon for cloning and inducible gene expression in Streptococcus pneumoniae. Plasmid, 2012, 67, 53-59.	0.4	16

#	Article	IF	CITATIONS
19	Genetic Regulation of the <i>yefM-yoeB</i> Toxin-Antitoxin Locus of Streptococcus pneumoniae. Journal of Bacteriology, 2011, 193, 4612-4625.	1.0	45
20	Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood, 2011, 117, 5092-5101.	0.6	223
21	Bacterial toxin-antitoxin systems targeting translation. Journal of Applied Biomedicine, 2010, 8, 179-188.	0.6	17
22	The relBE2Spn Toxin-Antitoxin System of Streptococcus pneumoniae: Role in Antibiotic Tolerance and Functional Conservation in Clinical Isolates. PLoS ONE, 2010, 5, e11289.	1.1	31
23	The yefM-yoeB Toxin-Antitoxin Systems of Escherichia coli and Streptococcus pneumoniae: Functional and Structural Correlation. Journal of Bacteriology, 2007, 189, 1266-1278.	1.0	63
24	The chromosomal relBE2 toxin-antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin-antitoxin interaction. Molecular Microbiology, 2006, 59, 1280-1296.	1.2	48
25	Toll-Like Receptor 2 Deficiency Delays Pneumococcal Phagocytosis and Impairs Oxidative Killing by Granulocytes. Infection and Immunity, 2005, 73, 8397-8401.	1.0	53
26	Construction of the mobilizable plasmid pMV158GFP, a derivative of pMV158 that carries the gene encoding the green fluorescent protein. Plasmid, 2003, 49, 281-285.	0.4	85
27	MalR-mediated Regulation of the Streptococcus pneumoniae malMP Operon at PromoterP. Journal of Biological Chemistry, 2001, 276, 14946-14954.	1.6	30
28	Expression of green fluorescent protein inLactococcus lactis. FEMS Microbiology Letters, 2000, 183, 229-234.	0.7	39
29	Construction of a Tightly Regulated Plasmid Vector for Streptococcus pneumoniae: Controlled Expression of the Green Fluorescent Protein. Plasmid, 2000, 43, 205-213.	0.4	30
30	Expression of green fluorescent protein in Lactococcus lactis. FEMS Microbiology Letters, 2000, 183, 229-234.	0.7	18
31	Quantitative detection of Streptococcus pneumoniae cells harbouring single or multiple copies of the gene encoding the green fluorescent protein. Microbiology (United Kingdom), 2000, 146, 1267-1273.	0.7	17
32	The Maltose/Maltodextrin Regulon of Streptococcus pneumoniae. Journal of Biological Chemistry, 1997, 272, 30860-30865.	1.6	54
33	MYB.Ph3 transcription factor from Petunia hybrida induces similar DNA-bending/distortions on its two types of binding site. Plant Journal, 1995, 8, 673-682.	2.8	23
34	Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida EMBO Journal, 1995, 14, 1773-1784.	3 . 5	208
35	Petunia hybrida genes related to the maize regulatory C1 gene and to animal myb proto-oncogenes. Plant Journal, 1993, 3, 553-562.	2.8	90
36	Genetic and functional analysis of the basic replicon of pPS10, a plasmid specific for Pseudomonas isolated from Pseudomonas syringae patovar savastanoi. Journal of Molecular Biology, 1992, 223, 415-426.	2.0	72

3

Concha Nieto

#	Article	IF	CITATIONS
37	Cloning vectors, derived from a naturally occuring plasmid of Pseudomonas savastanoi, specifically tailored for genetic manipulations in Pseudomonas. Gene, 1990, 87, 145-149.	1.0	37
38	Bacterial zipper. Nature, 1989, 342, 866-866.	13.7	53
39	Host cell variations resulting from F plasmid-controlled replication of the Escherichia coli chromosome. Journal of Bacteriology, 1986, 165, 424-427.	1.0	6