William D Beavis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559116/publications.pdf

Version: 2024-02-01

687363 713466 1,093 21 13 21 citations h-index g-index papers 23 23 23 1286 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats. Plant Genome, 2011, 4, .	2.8	214
2	Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures. G3: Genes, Genomes, Genetics, 2014, 4, 1027-1046.	1.8	148
3	Genetic Characterization of the Soybean Nested Association Mapping Population. Plant Genome, 2017, 10, plantgenome2016.10.0109.	2.8	114
4	Genetic Architecture of Soybean Yield and Agronomic Traits. G3: Genes, Genomes, Genetics, 2018, 8, 3367-3375.	1.8	98
5	Technological advances in maize breeding: past, present and future. Theoretical and Applied Genetics, 2019, 132, 817-849.	3.6	97
6	Genomic, Markerâ€Assisted, and Pedigreeâ€BLUP Selection Methods for βâ€Glucan Concentration in Elite Oat. Crop Science, 2013, 53, 1894-1906.	1.8	84
7	Multi-objective optimized genomic breeding strategies for sustainable food improvement. Heredity, 2019, 122, 672-683.	2.6	77
8	Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population. G3: Genes, Genomes, Genetics, 2018, 8, 519-529.	1.8	75
9	The Predicted Cross Value for Genetic Introgression of Multiple Alleles. Genetics, 2017, 205, 1409-1423.	2.9	39
10	Leveraging genomic prediction to scan germplasm collection for crop improvement. PLoS ONE, 2017, 12, e0179191.	2.5	35
11	Genomeâ€wide Association Study for Betaâ€glucan Concentration in Elite North American Oat. Crop Science, 2013, 53, 542-553.	1.8	23
12	Family-based association mapping in crop species. Theoretical and Applied Genetics, 2013, 126, 1419-1430.	3.6	22
13	GWASpro: a high-performance genome-wide association analysis server. Bioinformatics, 2019, 35, 2512-2514.	4.1	18
14	Systematic design for trait introgression projects. Theoretical and Applied Genetics, 2017, 130, 1993-2004.	3.6	16
15	High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (<i>Glycine max</i>) nested association mapping population. Genetics, 2022, , .	2.9	8
16	Numericware i: Identical by State Matrix Calculator. Evolutionary Bioinformatics, 2017, 13, 117693431668866.	1.2	6
17	Application of Response Surface Methods To Determine Conditions for Optimal Genomic Prediction. G3: Genes, Genomes, Genetics, 2017, 7, 3103-3113.	1.8	5
18	Numericware N: Numerator Relationship Matrix Calculator. Journal of Heredity, 2016, 107, 686-690.	2.4	4

#	Article	IF	CITATIONS
19	Estimation of genetic variance contributed by a quantitative trait locus: correcting the bias associated with significance tests. Genetics, 2021, 219, .	2.9	4
20	Dynamic Programming for Resource Allocation in Multi-Allelic Trait Introgression. Frontiers in Plant Science, 2021, 12, 544854.	3.6	2
21	Predictions from algorithmic modeling result in better decisions than from data modeling for soybean iron deficiency chlorosis. PLoS ONE, 2021, 16, e0240948.	2.5	2