
Mariusz R Wieckowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7558728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. European Journal of Clinical Investigation, 2022, 52, e13622.	1.7	63
2	<i>Ndufs4</i> knockout mouse models of Leigh syndrome: pathophysiology and intervention. Brain, 2022, 145, 45-63.	3.7	32
3	Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacological Research, 2022, 177, 106119.	3.1	22
4	The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. Biology, 2022, 11, 300.	1.3	22
5	Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers, 2022, 14, 1221.	1.7	15
6	Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway. Biomedicines, 2022, 10, 726.	1.4	3
7	Similarities between fibroblasts and cardiomyocytes in the study of the permeability transition pore. European Journal of Clinical Investigation, 2022, 52, e13764.	1.7	2
8	Increase of Parkin and ATG5 plasmatic levels following perinatal hypoxic-ischemic encephalopathy. Scientific Reports, 2022, 12, 7795.	1.6	4
9	Mitochondria-targeted anti-oxidant AntiOxCIN4 improved liver steatosis in Western diet-fed mice by preventing lipid accumulation due to upregulation of fatty acid oxidation, quality control mechanism and antioxidant defense systems. Redox Biology, 2022, 55, 102400.	3.9	12
10	An Update on Isolation of Functional Mitochondria from Cells for Bioenergetics Studies. Methods in Molecular Biology, 2021, 2310, 79-89.	0.4	1
11	Mitochondrial P2X7 Receptor Localization Modulates Energy Metabolism Enhancing Physical Performance. Function, 2021, 2, zqab005.	1.1	29
12	A naturally occurring mutation in ATP synthase subunit c is associated with increased damage following hypoxia/reoxygenation in STEMI patients. Cell Reports, 2021, 35, 108983.	2.9	21
13	Editorial: Organelles Relationships and Interactions: A Cancer Perspective. Frontiers in Cell and Developmental Biology, 2021, 9, 678307.	1.8	4
14	Exploratory Data Analysis of Cell and Mitochondrial High-Fat, High-Sugar Toxicity on Human HepG2 Cells. Nutrients, 2021, 13, 1723.	1.7	8
15	Ras, TrkB, and ShcA Protein Expression Patterns in Pediatric Brain Tumors. Journal of Clinical Medicine, 2021, 10, 2219.	1.0	0
16	Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
17	The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biological Reviews, 2021, 96, 2489-2521.	4.7	59
18	The Alterations of Mitochondrial Function during NAFLD Progression—An Independent Effect of Mitochondrial ROS Production. International Journal of Molecular Sciences, 2021, 22, 6848.	1.8	24

MARIUSZ R WIECKOWSKI

#	Article	IF	CITATIONS
19	Cell death as a result of calcium signaling modulation: A cancer-centric prospective. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119061.	1.9	29
20	Effects of plant alkaloids on mitochondrial bioenergetic parameters. Food and Chemical Toxicology, 2021, 154, 112316.	1.8	1
21	Swim training affects Akt signaling and ameliorates loss of skeletal muscle mass in a mouse model of amyotrophic lateral sclerosis. Scientific Reports, 2021, 11, 20899.	1.6	5
22	Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function. Cell Communication and Signaling, 2021, 19, 116.	2.7	6
23	Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Seminars in Cell and Developmental Biology, 2020, 98, 167-180.	2.3	35
24	The role of mitochondria-associated membranes in cellular homeostasis and diseases. International Review of Cell and Molecular Biology, 2020, 350, 119-196.	1.6	77
25	Western Diet Causes Obesity-Induced Nonalcoholic Fatty Liver Disease Development by Differentially Compromising the Autophagic Response. Antioxidants, 2020, 9, 995.	2.2	27
26	Aortic Valve Stenosis and Mitochondrial Dysfunctions: Clinical and Molecular Perspectives. International Journal of Molecular Sciences, 2020, 21, 4899.	1.8	20
27	Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 153-193.	0.9	13
28	The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165834.	1.8	51
29	Pharmacological modulation of mitochondrial calcium uniporter controls lung inflammation in cystic fibrosis. Science Advances, 2020, 6, eaax9093.	4.7	39
30	Mitophagy in Cardiovascular Diseases. Journal of Clinical Medicine, 2020, 9, 892.	1.0	70
31	Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology. Biomolecules, 2020, 10, 998.	1.8	81
32	Citrate Mediates Crosstalk between Mitochondria and the Nucleus to Promote Human Mesenchymal Stem Cell In Vitro Osteogenesis. Cells, 2020, 9, 1034.	1.8	21
33	NDUFS4 deletion triggers loss of NDUFA12 in Ndufs4 mice and Leigh syndrome patients: A stabilizing role for NDUFAF2. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148213.	0.5	25
34	Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Frontiers in Cell and Developmental Biology, 2020, 8, 624216.	1.8	62
35	Mitochondrial Network and Biogenesis in Response to Short and Long-Term Exposure of Human BEAS-2B Cells to Aerosol Extracts from the Tobacco Heating System 2.2. Cellular Physiology and Biochemistry, 2020, 54, 230-251.	1.1	11
36	Regulation of PKCÎ ² levels and autophagy by PML is essential for high-glucose-dependent mesenchymal stem cell adipogenesis. International Journal of Obesity, 2019, 43, 963-973.	1.6	6

#	Article	IF	CITATIONS
37	A Diet Induced Maladaptive Increase in Hepatic Mitochondrial DNA Precedes OXPHOS Defects and May Contribute to Non-Alcoholic Fatty Liver Disease. Cells, 2019, 8, 1222.	1.8	28
38	Early Cardiac Mitochondrial Molecular and Functional Responses to Acute Anthracycline Treatment in Wistar Rats. Toxicological Sciences, 2019, 169, 137-150.	1.4	9
39	Mitochondria as a possible target for nicotine action. Journal of Bioenergetics and Biomembranes, 2019, 51, 259-276.	1.0	61
40	Mitochondrial calcium uniporter complex modulation in cancerogenesis. Cell Cycle, 2019, 18, 1068-1083.	1.3	34
41	Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death and Disease, 2019, 10, 317.	2.7	189
42	Fat and Sugar—A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients, 2019, 11, 2871.	1.7	14
43	Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nature Reviews Cardiology, 2019, 16, 33-55.	6.1	188
44	Swim Training Modulates Mouse Skeletal Muscle Energy Metabolism and Ameliorates Reduction in Grip Strength in a Mouse Model of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2019, 20, 233.	1.8	16
45	Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochemical Pharmacology, 2019, 160, 34-45.	2.0	50
46	Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Current Medicinal Chemistry, 2019, 26, 3376-3406.	1.2	56
47	Mitochondria-associated membranes (MAMs) and inflammation. Cell Death and Disease, 2018, 9, 329.	2.7	210
48	Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell Death and Disease, 2018, 9, 332.	2.7	140
49	Role of Mitochondria-Associated ER Membranes in Calcium Regulation in Cancer-Specific Settings. Neoplasia, 2018, 20, 510-523.	2.3	96
50	Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. Food and Chemical Toxicology, 2018, 115, 1-12.	1.8	38
51	Mitochondria in non-alcoholic fatty liver disease. International Journal of Biochemistry and Cell Biology, 2018, 95, 93-99.	1.2	183
52	Recovering Mitochondrial Function in Patients' Fibroblasts. , 2018, , 359-378.		2
53	The Mitochondrial Permeability Transition Pore. , 2018, , 47-73.		3
54	Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium, 2018, 69, 62-72.	1.1	435

#	Article	IF	CITATIONS
55	Relation Between Mitochondrial Membrane Potential and ROS Formation. Methods in Molecular Biology, 2018, 1782, 357-381.	0.4	79
56	Swim Training Modulates Skeletal Muscle Energy Metabolism, Oxidative Stress, and Mitochondrial Cholesterol Content in Amyotrophic Lateral Sclerosis Mice. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	28
57	Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. International Review of Cell and Molecular Biology, 2018, 340, 209-344.	1.6	208
58	Discovery of Novel 1,3,8-Triazaspiro[4.5]decane Derivatives That Target the c Subunit of F ₁ /F _O -Adenosine Triphosphate (ATP) Synthase for the Treatment of Reperfusion Damage in Myocardial Infarction. Journal of Medicinal Chemistry, 2018, 61, 7131-7143.	2.9	41
59	Mitochondrial alterations accompanied by oxidative stress conditions in skin fibroblasts of Huntington's disease patients. Metabolic Brain Disease, 2018, 33, 2005-2017.	1.4	37
60	Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 615-627.	0.5	146
61	Mechanistic Role of mPTP in Ischemia-Reperfusion Injury. Advances in Experimental Medicine and Biology, 2017, 982, 169-189.	0.8	91
62	Mitochondrial permeability transition involves dissociation of F ₁ <scp>F_O ATP</scp> synthase dimers and Câ€ring conformation. EMBO Reports, 2017, 18, 1077-1089.	2.0	163
63	Carvedilol and antioxidant proteins in a type I diabetes animal model. European Journal of Clinical Investigation, 2017, 47, 19-29.	1.7	16
64	Modulation of mitochondrial dysfunction-related oxidative stress in fibroblasts of patients with Leigh syndrome by inhibition of prooxidative p66Shc pathway. Mitochondrion, 2017, 37, 62-79.	1.6	14
65	Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. International Review of Cell and Molecular Biology, 2017, 328, 49-103.	1.6	65
66	Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. International Journal of Molecular Sciences, 2017, 18, 1576.	1.8	164
67	Regulation of Endoplasmic Reticulum–Mitochondria Ca2+ Transfer and Its Importance for Anti-Cancer Therapies. Frontiers in Oncology, 2017, 7, 180.	1.3	48
68	Alterations in Mitochondrial and Endoplasmic Reticulum Signaling by p53 Mutants. Frontiers in Oncology, 2016, 6, 42.	1.3	19
69	Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. International Journal of Biochemistry and Cell Biology, 2016, 81, 281-293.	1.2	147
70	Localization and Processing ofÂtheÂAmyloid-β Protein Precursor inÂMitochondria-Associated Membranes. Journal of Alzheimer's Disease, 2016, 55, 1549-1570.	1.2	107
71	Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques. Nature Protocols, 2016, 11, 1067-1080.	5.5	66
72	Quantifying ROS levels using CM-H 2 DCFDA and HyPer. Methods, 2016, 109, 3-11.	1.9	138

#	Article	IF	CITATIONS
73	p66Shc signaling is involved in stress responses elicited by anthracycline treatment of rat cardiomyoblasts. Archives of Toxicology, 2016, 90, 1669-1684.	1.9	26
74	Measuring p66Shc Signaling Pathway Activation and Mitochondrial Translocation in Cultured Cells. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2015, 66, 25.6.1-25.6.21.	1.1	1
75	Mitochondrial Ca2+ Remodeling is a Prime Factor in Oncogenic Behavior. Frontiers in Oncology, 2015, 5, 143.	1.3	31
76	Mitochondria-Associated Membranes: Composition, Molecular Mechanisms, and Physiopathological Implications. Antioxidants and Redox Signaling, 2015, 22, 995-1019.	2.5	243
77	p53 at the endoplasmic reticulum regulates apoptosis in a Ca ²⁺ -dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1779-1784.	3.3	247
78	Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-α. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 529-540.	1.8	40
79	The interplay between p66Shc, reactive oxygen species and cancer cell metabolism. European Journal of Clinical Investigation, 2015, 45, 25-31.	1.7	28
80	Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene, 2015, 34, 1475-1486.	2.6	244
81	Isolation of Crude Mitochondrial Fraction from Cells. Methods in Molecular Biology, 2015, 1241, 1-8.	0.4	8
82	Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2015, 78, 142-153.	0.9	194
83	Histoenzymatic Methods for Visualization of the Activity of Individual Mitochondrial Respiratory Chain Complexes in the Muscle Biopsies from Patients with Mitochondrial Defects. Methods in Molecular Biology, 2015, 1241, 85-93.	0.4	6
84	Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes. Molecular and Cellular Oncology, 2014, 1, e956469.	0.3	43
85	STAT3 Activities and Energy Metabolism: Dangerous Liaisons. Cancers, 2014, 6, 1579-1596.	1.7	35
86	Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1247-1256.	0.5	81
87	Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death and Differentiation, 2014, 21, 1198-1208.	5.0	97
88	Novel c. <scp>191C</scp> >C (p. <scp>Pro64Arg</scp>) <i><scp>MPV17</scp></i> mutation identified in two pairs of unrelated Polish siblings with mitochondrial hepatoencephalopathy. Clinical Genetics, 2014, 85, 573-577.	1.0	7
89	Methods to Monitor ROS Production by Fluorescence Microscopy and Fluorometry. Methods in Enzymology, 2014, 542, 243-262.	0.4	253
90	Isolation of plasma membrane–associated membranes from rat liver. Nature Protocols, 2014, 9, 312-322.	5.5	129

MARIUSZ R WIECKOWSKI

#	Article	IF	CITATIONS
91	Methods to Monitor and Compare Mitochondrial and Glycolytic ATP Production. Methods in Enzymology, 2014, 542, 313-332.	0.4	27
92	Left ventricular noncompaction (LVNC) and low mitochondrial membrane potential are specific for Barth syndrome. Journal of Inherited Metabolic Disease, 2013, 36, 929-937.	1.7	23
93	PGC-1Î ² mediates adaptive chemoresistance associated with mitochondrial DNA mutations. Oncogene, 2013, 32, 2592-2600.	2.6	35
94	Cardiac mitochondrial dysfunction during hyperglycemia—The role of oxidative stress and p66Shc signaling. International Journal of Biochemistry and Cell Biology, 2013, 45, 114-122.	1.2	33
95	Mitochondrial disruption occurs downstream from Î ² -adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways. International Journal of Biochemistry and Cell Biology, 2013, 45, 2379-2391.	1.2	18
96	Role of the c subunit of the F _O ATP synthase in mitochondrial permeability transition. Cell Cycle, 2013, 12, 674-683.	1.3	416
97	Disrupted ATP synthase activity and mitochondrial hyperpolarisation-dependent oxidative stress is associated with p66Shc phosphorylation in fibroblasts of NARP patients. International Journal of Biochemistry and Cell Biology, 2013, 45, 141-150.	1.2	18
98	Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain. PLoS ONE, 2013, 8, e68125.	1.1	89
99	Oxidative Stress in Cardiovascular Diseases and Obesity: Role of p66Shc and Protein Kinase C. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-11.	1.9	103
100	Mitochondria-Ros Crosstalk in the Control of Cell Death and Aging. Journal of Signal Transduction, 2012, 2012, 1-17.	2.0	488
101	Regulation and protection of mitochondrial physiology by sirtuins. Mitochondrion, 2012, 12, 66-76.	1.6	39
102	Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion, 2012, 12, 77-85.	1.6	158
103	Guanosine diphosphate exerts a lower effect on superoxide release from mitochondrial matrix in the brains of uncoupling protein-2 knockout mice: New evidence for a putative novel function of uncoupling proteins as superoxide anion transporters. Biochemical and Biophysical Research Communications, 2012, 428, 234-238.	1.0	2
104	Effect of mtDNA point mutations on cellular bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1740-1746.	0.5	50
105	Relation Between Mitochondrial Membrane Potential and ROS Formation. Methods in Molecular Biology, 2012, 810, 183-205.	0.4	318
106	ATP synthesis and storage. Purinergic Signalling, 2012, 8, 343-357.	1.1	340
107	Mitochondrial Ca2+ and apoptosis. Cell Calcium, 2012, 52, 36-43.	1.1	361
108	Mitochondria-Associated Membranes (MAMs) as Hotspot Ca2+ Signaling Units. Advances in Experimental Medicine and Biology, 2012, 740, 411-437.	0.8	70

#	Article	IF	CITATIONS
109	Inhibition by purine nucleotides of the release of reactive oxygen species from muscle mitochondria: Indication for a function of uncoupling proteins as superoxide anion transporters. Biochemical and Biophysical Research Communications, 2011, 407, 772-776.	1.0	10
110	Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Communication and Signaling, 2011, 9, 19.	2.7	304
111	Mitochondria associated membranes (MAMs) as critical hubs for apoptosis. Communicative and Integrative Biology, 2011, 4, 334-335.	0.6	42
112	p66Shc Aging Protein in Control of Fibroblasts Cell Fate. International Journal of Molecular Sciences, 2011, 12, 5373-5389.	1.8	19
113	Mitochondrial Tolerance to Drugs and Toxic Agents in Ageing and Disease. Current Drug Targets, 2011, 12, 827-849.	1.0	16
114	Increased reactive oxygen species (ROS) production and low catalase level in fibroblasts of a girl with MEGDEL association (Leigh syndrome, deafness, 3-methylglutaconic aciduria). , 2011, 49, 56-63.		11
115	Mitochondrial fatty acid oxidation and oxidative stress: Lack of reverse electron transfer-associated production of reactive oxygen species. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 929-938.	0.5	89
116	Oxidative stress-dependent p66Shc phosphorylation in skin fibroblasts of children with mitochondrial disorders. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 952-960.	0.5	65
117	Methylâ€betaâ€cyclodextrin induces mitochondrial cholesterol depletion and alters the mitochondrial structure and bioenergetics. FEBS Letters, 2010, 584, 4606-4610.	1.3	44
118	A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging, 2010, 2, 823-842.	1.4	231
119	PML Regulates Apoptosis at Endoplasmic Reticulum by Modulating Calcium Release. Science, 2010, 330, 1247-1251.	6.0	360
120	Cardiotoxicity of the Anticancer Therapeutic Agent Bortezomib. American Journal of Pathology, 2010, 176, 2658-2668.	1.9	115
121	Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nature Protocols, 2009, 4, 1582-1590.	5.5	726
122	Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. International Journal of Biochemistry and Cell Biology, 2009, 41, 1805-1816.	1.2	165
123	Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein. International Journal of Biochemistry and Cell Biology, 2009, 41, 2440-2449.	1.2	20
124	Age-related changes in levels of p66Shc and serine 36-phosphorylated p66Shc in organs and mouse tissues. Archives of Biochemistry and Biophysics, 2009, 486, 73-80.	1.4	91
125	Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicology and Applied Pharmacology, 2008, 231, 34-42.	1.3	119
126	Regulation of Mitochondrial Structure and Function by the F1Fo-ATPase Inhibitor Protein, IF1. Cell Metabolism, 2008, 8, 13-25.	7.2	246

#	Article	IF	CITATIONS
127	Protein Kinase C Â and Prolyl Isomerase 1 Regulate Mitochondrial Effects of the Life-Span Determinant p66Shc. Science, 2007, 315, 659-663.	6.0	448
128	Mitochondrial dynamics and Ca2+ signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 442-449.	1.9	170
129	Reactive oxygen species produced by the mitochondrial respiratory chain are involved in Cd2+-induced injury of rat ascites hepatoma AS-30D cells. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1568-1574.	0.5	60
130	Overexpression of adenine nucleotide translocase reduces Ca2+ signal transmission between the ER and mitochondria. Biochemical and Biophysical Research Communications, 2006, 348, 393-399.	1.0	25
131	Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis. Cell Death and Differentiation, 2006, 13, 1827-1829.	5.0	57
132	Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: The way to apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 152-163.	1.9	26
133	Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. Journal of Cell Biology, 2006, 175, 901-911.	2.3	1,107
134	Basal Activation of the P2X7 ATP Receptor Elevates Mitochondrial Calcium and Potential, Increases Cellular ATP Levels, and Promotes Serum-independent Growth. Molecular Biology of the Cell, 2005, 16, 3260-3272.	0.9	242
135	Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes. Journal of Cell Biology, 2004, 165, 223-232.	2.3	79
136	Effects of N-acylethanolamines on mitochondrial energetics and permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1657, 151-163.	0.5	20
137	Drp-1-Dependent Division of the Mitochondrial Network Blocks Intraorganellar Ca2+ Waves and Protects against Ca2+-Mediated Apoptosis. Molecular Cell, 2004, 16, 59-68.	4.5	440
138	Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. Journal of Cell Biology, 2002, 159, 613-624.	2.3	400
139	Oligomeric C-terminal truncated Bax preferentially releases cytochromecbut not adenylate kinase from mitochondria, outer membrane vesicles and proteoliposomes. FEBS Letters, 2001, 505, 453-459.	1.3	21
140	Long-chain fatty acid-promoted swelling of mitochondria: further evidence for the protonophoric effect of fatty acids in the inner mitochondrial membrane. FEBS Letters, 2000, 471, 108-112.	1.3	69
141	Long-chain fatty acids promote opening of the reconstituted mitochondrial permeability transition pore. FEBS Letters, 2000, 484, 61-64.	1.3	62
142	The mechanisms of fatty acid-induced proton permeability of the inner mitochondrial membrane. , 1999, 31, 447-455.		95
143	Effect of glucose and deoxyglucose on the redistribution of calcium in Ehrlich ascites tumour and Zajdela hepatoma cells and its consequences for mitochondrial energetics. Further arguments for the role of Ca2+ in the mechanism of the Crabtree effect. FEBS Journal, 1999, 263, 495-501.	0.2	44
144	A Novel Apoptosis-like Pathway, Independent of Mitochondria and Caspases, Induced by Curcumin in Human Lymphoblastoid T (Jurkat) Cells. Experimental Cell Research, 1999, 249, 299-307.	1.2	126

#	Article	IF	CITATIONS
145	Fatty acid-induced uncoupling of oxidative phosphorylation is partly due to opening of the mitochondrial permeability transition pore. FEBS Letters, 1998, 423, 339-342.	1.3	112
146	Protonophoric Activity of Fatty Acid Analogs and Derivatives in the Inner Mitochondrial Membrane: A Further Argument for the Fatty Acid Cycling Model. Archives of Biochemistry and Biophysics, 1998, 357, 76-84.	1.4	64
147	Involvement of the Dicarboxylate Carrier in the Protonophoric Action of Long-Chain Fatty Acids in Mitochondria. Biochemical and Biophysical Research Communications, 1997, 232, 414-417.	1.0	105
148	Thyroid hormone-induced expression of the ADP/ATP carrier and its effect on fatty acid-induced uncoupling of oxidative phosphorylation. FEBS Letters, 1997, 416, 19-22.	1.3	61
149	Photomodification of Mitochondrial Proteins by Azido Fatty Acids and Its Effect on Mitochondrial Energetics. Further Evidence for the Role of the ADP/ATP Carrier in Fatty-Acid-Mediated Uncoupling. FEBS Journal, 1996, 240, 387-393.	0.2	44