
## Jiang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7558704/publications.pdf Version: 2024-02-01



Ιμνις Ζησιι

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Preparation and characterization of active films based on chitosan incorporated tea polyphenols.<br>Food Hydrocolloids, 2013, 32, 35-41.                                                                                              | 10.7 | 327       |
| 2  | Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. International Journal of Biological Macromolecules, 2017, 105, 1636-1643.                                                     | 7.5  | 271       |
| 3  | Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. International Journal of Biological Macromolecules, 2019, 135, 898-906.                                          | 7.5  | 96        |
| 4  | Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid.<br>International Journal of Biological Macromolecules, 2016, 91, 1186-1193.                                                         | 7.5  | 91        |
| 5  | High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. Food Chemistry, 2017, 227, 369-375.                                                                  | 8.2  | 80        |
| 6  | Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydrate Polymers, 2009, 76, 632-638.                                                                                                                | 10.2 | 78        |
| 7  | A method for improving dispersion of starch nanocrystals in water through crosslinking<br>modification with sodium hexametaphosphate. Carbohydrate Polymers, 2012, 87, 1874-1876.                                                     | 10.2 | 75        |
| 8  | Surface photo-crosslinking of corn starch sheets. Carbohydrate Polymers, 2008, 74, 405-410.                                                                                                                                           | 10.2 | 68        |
| 9  | Fabrication and characterization of chitin nanofibers through esterification and ultrasound treatment. Carbohydrate Polymers, 2018, 180, 81-87.                                                                                       | 10.2 | 67        |
| 10 | Controlled mechanical and swelling properties of poly(vinyl alcohol)/sodium alginate blend<br>hydrogels prepared by freeze–thaw followed by Ca <sup>2+</sup> crosslinking. Journal of Applied<br>Polymer Science, 2012, 124, 823-831. | 2.6  | 64        |
| 11 | Antioxidant activity and physicochemical properties of chitosan films incorporated with <i>Lycium barbarum</i> fruit extract for active food packaging. International Journal of Food Science and Technology, 2015, 50, 458-464.      | 2.7  | 61        |
| 12 | Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate. Carbohydrate Polymers, 2012, 89, 473-477.                                                                                   | 10.2 | 58        |
| 13 | Surface esterification of corn starch films: Reaction with dodecenyl succinic anhydride.<br>Carbohydrate Polymers, 2009, 78, 888-893.                                                                                                 | 10.2 | 57        |
| 14 | Dual modification of starch nanocrystals via crosslinking and esterification for enhancing their hydrophobicity. Food Research International, 2016, 87, 180-188.                                                                      | 6.2  | 52        |
| 15 | Effects of nonâ€ <b>s</b> olvent and starch solution on formation of starch nanoparticles by nanoprecipitation. Starch/Staerke, 2016, 68, 258-263.                                                                                    | 2.1  | 50        |
| 16 | Physicochemical properties of catechin/ $\hat{l}^2$ -cyclodextrin inclusion complex obtained via co-precipitation. CYTA - Journal of Food, 2019, 17, 544-551.                                                                         | 1.9  | 49        |
| 17 | Physicochemical Properties of Chitosan Films Incorporated with Honeysuckle Flower Extract for Active Food Packaging. Journal of Food Process Engineering, 2017, 40, e12305.                                                           | 2.9  | 40        |
| 18 | Effect of operating conditions on size and morphology of amylose nanoparticles prepared by precipitation. Starch/Staerke, 2015, 67, 365-372.                                                                                          | 2.1  | 39        |

JIANG ZHOU

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol) coatings for self-cleaning and oil/water separation. Applied Surface Science, 2017, 412, 10-18.       | 6.1  | 38        |
| 20 | Effects of bamboo fibers on friction performance of friction materials. Journal of Thermoplastic<br>Composite Materials, 2013, 26, 845-859.                                                       | 4.2  | 32        |
| 21 | Hydrophobization of starch nanocrystals through esterification in green media. Industrial Crops and Products, 2014, 59, 115-118.                                                                  | 5.2  | 31        |
| 22 | Influence of ultrasonic treatment on formation of amylose nanoparticles prepared by nanoprecipitation. Carbohydrate Polymers, 2017, 157, 1413-1418.                                               | 10.2 | 31        |
| 23 | Effect of surface esterification with octenyl succinic anhydride on hydrophilicity of corn starch films. Journal of Applied Polymer Science, 2009, 114, 940-947.                                  | 2.6  | 28        |
| 24 | Influence of surface esterification with alkenyl succinic anhydrides on mechanical properties of corn starch films. Carbohydrate Polymers, 2010, 82, 1010-1013.                                   | 10.2 | 28        |
| 25 | Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation.<br>International Journal of Biological Macromolecules, 2017, 97, 481-488.                    | 7.5  | 22        |
| 26 | Modification of microcrystalline cellulose by using soybean oil for surface hydrophobization.<br>Industrial Crops and Products, 2013, 46, 301-303.                                                | 5.2  | 19        |
| 27 | Synthesis, characterization, and flocculation performance of cationic starch nanoparticles.<br>Carbohydrate Polymers, 2021, 269, 118337.                                                          | 10.2 | 19        |
| 28 | Effect of postcrosslinking modification with glutaraldehyde on the properties of thermoplastic starch/poly(vinyl alcohol) blend films. Journal of Applied Polymer Science, 2012, 124, 3774-3781.  | 2.6  | 18        |
| 29 | Characterization of amylose nanoparticles prepared via nanoprecipitation: Influence of chain length<br>distribution. Carbohydrate Polymers, 2018, 194, 154-160.                                   | 10.2 | 17        |
| 30 | Performance improvement of starch films reinforced with starch nanocrystals (SNCs) modified by<br>crossâ€linking. Starch/Staerke, 2017, 69, 1600025.                                              | 2.1  | 16        |
| 31 | Biomimetic hydrophobic surfaces with low or high adhesion based on poly(vinyl alcohol) and SiO2<br>nanoparticles. Journal of Bionic Engineering, 2017, 14, 476-485.                               | 5.0  | 16        |
| 32 | Effects of surfactants on size and structure of amylose nanoparticles prepared by precipitation.<br>Bulletin of Materials Science, 2016, 39, 35-39.                                               | 1.7  | 15        |
| 33 | Influence of surface photocrosslinking on properties of thermoplastic starch sheets. Journal of<br>Applied Polymer Science, 2009, 112, 99-106.                                                    | 2.6  | 13        |
| 34 | Influence of Precipitation Conditions on Crystallinity of Amylose Nanoparticles. Starch/Staerke, 2018,<br>70, 1700213.                                                                            | 2.1  | 12        |
| 35 | Effect of fatty acid addition on properties of amylose nanoparticles prepared via complexing and precipitation. Industrial Crops and Products, 2020, 145, 112097.                                 | 5.2  | 12        |
| 36 | Convenient Method for Enhancing Hydrophobicity and Dispersibility of Starch Nanocrystals by<br>Crosslinking Modification with Citric Acid. International Journal of Food Engineering, 2018, 14, . | 1.5  | 11        |

**JIANG ZHOU** 

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Optimization of corn starch succinylation using response surface methodology. Starch/Staerke, 2014, 66, 508-514.                                                                                                                 | 2.1  | 9         |
| 38 | Acid hydrolysis of amylose granules and effect of molecular weight on properties of ethanol precipitated amylose nanoparticles. Carbohydrate Polymers, 2021, 252, 117243.                                                        | 10.2 | 8         |
| 39 | Preparation and Physicochemical Properties of Catechin/β-cyclodextrin Inclusion Complex<br>Nanoparticles. Food Biophysics, 2021, 16, 317-324.                                                                                    | 3.0  | 7         |
| 40 | Encapsulation of Lutein into Starch Nanoparticles to Improve Its Dispersity in Water and Enhance<br>Stability of Chemical Oxidation. Starch/Staerke, 2019, 71, 1800248.                                                          | 2.1  | 6         |
| 41 | Chain Length Distribution of βâ€amylase Treated Potato Starch and Its Effect on Properties of Starch<br>Nanoparticles Obtained by Nanoprecipitation. Starch/Staerke, 2019, 71, 1800321.                                          | 2.1  | 5         |
| 42 | Fabrication and characterisation of cellulose nanocrystals from microcrystalline cellulose by esterification and ultrasound treatment. Micro and Nano Letters, 2018, 13, 1574-1579.                                              | 1.3  | 5         |
| 43 | Fabrication and characterization of transparent underwater superoleophobic coatings based chitin nanofibers and polyvinyl alcohol. Journal of Applied Polymer Science, 2022, 139, .                                              | 2.6  | 3         |
| 44 | Cellulose nanofibers prepared from pulp through ultrasound treatment followed semi-dry<br>esterification and their application for transparent and anti-fingerprint coating. Progress in Organic<br>Coatings, 2022, 167, 106844. | 3.9  | 3         |