
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7558483/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renewable and<br>Sustainable Energy Reviews, 2009, 13, 1613-1619.                                      | 16.4 | 242       |
| 2  | Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. International<br>Journal of Life Cycle Assessment, 2009, 14, 529-539.                                 | 4.7  | 236       |
| 3  | Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nature Sustainability, 2018, 1, 737-743.                                                              | 23.7 | 236       |
| 4  | Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions:<br>Case study of Tianjin, China. Science of the Total Environment, 2009, 407, 1517-1526. | 8.0  | 186       |
| 5  | Metal requirements of low-carbon power generation. Energy, 2011, 36, 5640-5648.                                                                                                             | 8.8  | 181       |
| 6  | How to deal with the rebound effect? A policy-oriented approach. Energy Policy, 2016, 94, 114-125.                                                                                          | 8.8  | 175       |
| 7  | Estimating global copper demand until 2100 with regression and stock dynamics. Resources,<br>Conservation and Recycling, 2018, 132, 28-36.                                                  | 10.8 | 157       |
| 8  | Material flows and economic models: an analytical comparison of SFA, LCA and partial equilibrium models. Ecological Economics, 2000, 32, 195-216.                                           | 5.7  | 147       |
| 9  | Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden.<br>Ecological Economics, 2000, 32, 241-254.                                              | 5.7  | 145       |
| 10 | Resource constraints in a hydrogen economy based on renewable energy sources: An exploration.<br>Renewable and Sustainable Energy Reviews, 2010, 14, 2784-2795.                             | 16.4 | 141       |
| 11 | Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic<br>Appliances. Environmental Science & Technology, 2018, 52, 4950-4959.                  | 10.0 | 137       |
| 12 | Iron and steel in Chinese residential buildings: A dynamic analysis. Resources, Conservation and<br>Recycling, 2010, 54, 591-600.                                                           | 10.8 | 132       |
| 13 | An energy analysis of ethanol from cellulosic feedstock–Corn stover. Renewable and Sustainable<br>Energy Reviews, 2009, 13, 2003-2011.                                                      | 16.4 | 130       |
| 14 | Dynamic Material Flow Analysis for Strategic Construction and Demolition Waste Management in Beijing. Journal of Industrial Ecology, 2010, 14, 440-456.                                     | 5.5  | 120       |
| 15 | Life cycle assessment of switchgrass-derived ethanol as transport fuel. International Journal of Life<br>Cycle Assessment, 2010, 15, 468-477.                                               | 4.7  | 110       |
| 16 | Predicting future emissions based on characteristics of stocks. Ecological Economics, 2002, 41, 223-234.                                                                                    | 5.7  | 107       |
| 17 | Dematerialization: Not Just a Matter of Weight. Journal of Industrial Ecology, 2004, 8, 121-137.                                                                                            | 5.5  | 106       |
| 18 | Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals. Journal of Industrial Ecology, 2019, 23, 141-155.          | 5.5  | 104       |

2

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Modelling global material stocks and flows for residential and service sector buildings towards 2050. Journal of Cleaner Production, 2020, 245, 118658.                                  | 9.3  | 98        |
| 20 | Dynamics of urban and rural housing stocks in China. Building Research and Information, 2010, 38, 301-317.                                                                               | 3.9  | 93        |
| 21 | Life-cycle assessment of biofuels, convergence and divergence. Biofuels, 2010, 1, 435-449.                                                                                               | 2.4  | 86        |
| 22 | The foundations of the environmental rebound effect and its contribution towards a general framework. Ecological Economics, 2016, 125, 60-69.                                            | 5.7  | 84        |
| 23 | Global construction materials database and stock analysis of residential buildings between 1970-2050.<br>Journal of Cleaner Production, 2020, 247, 119146.                               | 9.3  | 80        |
| 24 | The rebound effect through industrial ecology's eyes: a review of LCA-based studies. International<br>Journal of Life Cycle Assessment, 2014, 19, 1933-1947.                             | 4.7  | 79        |
| 25 | Assessing environmental implications associated with global copper demand and supply scenarios from 2010 to 2050. Global Environmental Change, 2018, 49, 106-115.                        | 7.8  | 77        |
| 26 | A greenhouse gas indicator for bioenergy: some theoretical issues with practical implications.<br>International Journal of Life Cycle Assessment, 2009, 14, 328-339.                     | 4.7  | 72        |
| 27 | The Remarkable Environmental Rebound Effect of Electric Cars: A Microeconomic Approach.<br>Environmental Science & Technology, 2014, 48, 12063-12072.                                    | 10.0 | 70        |
| 28 | The environmental and economic consequences of the developments of lead stocks in the Dutch economic system. Resources, Conservation and Recycling, 2004, 42, 133-154.                   | 10.8 | 69        |
| 29 | The relativity of eco-innovation: environmental rebound effects from past transport innovations in Europe. Journal of Cleaner Production, 2015, 101, 71-85.                              | 9.3  | 65        |
| 30 | Comparative life cycle assessments of incineration and non-incineration treatments for medical waste. International Journal of Life Cycle Assessment, 2009, 14, 114-121.                 | 4.7  | 62        |
| 31 | Assessing the future environmental impacts of copper production in China: Implications of the energy transition. Journal of Cleaner Production, 2020, 274, 122825.                       | 9.3  | 58        |
| 32 | Modeling copper demand in China up to 2050: A businessâ€asâ€usual scenario based on dynamic stock and<br>flow analysis. Journal of Industrial Ecology, 2019, 23, 1363-1380.              | 5.5  | 56        |
| 33 | Composting, anaerobic digestion and biochar production in Ghana. Environmental–economic<br>assessment in the context of voluntary carbon markets. Waste Management, 2014, 34, 2454-2465. | 7.4  | 48        |
| 34 | Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case<br>study of Tianjin, China. Waste Management, 2011, 31, 1407-1415.                    | 7.4  | 45        |
| 35 | Material requirements for low-carbon energy technologies: A quantitative review. Renewable and<br>Sustainable Energy Reviews, 2022, 161, 112334.                                         | 16.4 | 44        |
| 36 | Substance flows through the economy and environment of a region. Environmental Science and Pollution Research, 1995, 2, 137-144.                                                         | 5.3  | 39        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nitrogen pollution in the European Union – origins and proposed solutions. Environmental<br>Conservation, 1996, 23, 120-132.                                                                                                      | 1.3  | 37        |
| 38 | Full Mode and Attribution Mode in Environmental Analysis. Journal of Industrial Ecology, 2000, 4, 45-56.                                                                                                                          | 5.5  | 33        |
| 39 | Scenarios for anthropogenic copper demand and supply in China: implications of a scrap import ban and a circular economy transition. Resources, Conservation and Recycling, 2020, 161, 104943.                                    | 10.8 | 32        |
| 40 | Risks to health and environment of the use of lead in products in the EU. Resources, Conservation and Recycling, 2006, 49, 89-109.                                                                                                | 10.8 | 31        |
| 41 | Implementing the Results of Material Flow Analysis. Journal of Industrial Ecology, 2009, 13, 643-649.                                                                                                                             | 5.5  | 31        |
| 42 | Using LCAâ€based Decomposition Analysis to Study the Multidimensional Contribution of Technological<br>Innovation to Environmental Pressures. Journal of Industrial Ecology, 2014, 18, 380-392.                                   | 5.5  | 28        |
| 43 | Chlorine in the Netherlands, Part I, An Overview. Journal of Industrial Ecology, 1997, 1, 95-116.                                                                                                                                 | 5.5  | 27        |
| 44 | Controlling substance flows: The case of chlorine. Environmental Management, 1994, 18, 523-542.                                                                                                                                   | 2.7  | 21        |
| 45 | Substance flows through the economy and environment of a region. Environmental Science and Pollution Research, 1995, 2, 89-89.                                                                                                    | 5.3  | 21        |
| 46 | Deriving European Tantalum Flows Using Trade and Production Statistics. Journal of Industrial Ecology, 2018, 22, 166-179.                                                                                                         | 5.5  | 21        |
| 47 | Using SFA indicators to support environmental policy. Environmental Science and Pollution Research, 1999, 6, 49-58.                                                                                                               | 5.3  | 19        |
| 48 | Matching Demolition and Construction Material Flows, an Urban Mining Case Study. Sustainability, 2021, 13, 653.                                                                                                                   | 3.2  | 19        |
| 49 | Long-term consequences of non-intentional flows of substances: Modelling non-intentional flows of<br>lead in the Dutch economic system and evaluating their environmental consequences. Waste<br>Management, 2009, 29, 1916-1928. | 7.4  | 18        |
| 50 | Side effects of categorized environmental measures and their implications for impact analysis.<br>Environmental Science and Policy, 2003, 6, 167-174.                                                                             | 4.9  | 14        |
| 51 | Long-Term Prospects for the Environmental Profile of Advanced Sugar Cane Ethanol. Environmental<br>Science & Technology, 2014, 48, 12394-12402.                                                                                   | 10.0 | 14        |
| 52 | Towards a low-carbon and circular economy: Scenarios for metal stocks and flows in the Dutch electricity system. Resources, Conservation and Recycling, 2022, 178, 106105.                                                        | 10.8 | 13        |
| 53 | The need for combining IEA and IE tools: The potential effects of a global ban on PVC on climate change. Ecological Economics, 2008, 65, 266-281.                                                                                 | 5.7  | 11        |
| 54 | Freely Disposable Time: A Time and Money Integrated Measure of Poverty and Freedom. World<br>Development, 2011, 39, 2055-2068.                                                                                                    | 4.9  | 11        |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Chlorine in the Netherlands, Part II: Risk Management in Uncertainty for Chlorine. Journal of<br>Industrial Ecology, 1997, 1, 91-110.                                                                         | 5.5  | 10        |
| 56 | Books: Our Ecological Footprint: Reducing Human Impact on the Earth. Journal of Industrial Ecology, 1999, 3, 185-187.                                                                                         | 5.5  | 10        |
| 57 | Assessing China's potential for reducing primary copper demand and associated environmental<br>impacts in the context of energy transition and "Zero waste―policies. Waste Management, 2022, 144,<br>454-467. | 7.4  | 10        |
| 58 | Human and Ecological Life Cycle Tools for the Integrated Assessment of Systems (HELIAS).<br>International Journal of Life Cycle Assessment, 2006, 11, 19-28.                                                  | 4.7  | 7         |
| 59 | Methodology to prospect electronics compositions and flows, illustrated by material trends in printed circuit boards. Journal of Cleaner Production, 2021, 307, 127164.                                       | 9.3  | 7         |
| 60 | Economic characteristics of chemicals as a basis for pollutants policy. Ecological Economics, 1995, 13, 11-26.                                                                                                | 5.7  | 5         |
| 61 | Strategic design of long-term climate policy instrumentations, with exemplary EU focus. Climate Policy, 2017, 17, S8-S31.                                                                                     | 5.1  | 5         |
| 62 | Alternatives for naturalâ€gasâ€based heating systems: A quantitative GISâ€based analysis of climate impacts<br>and financial feasibility. Journal of Industrial Ecology, 2021, 25, 219-232.                   | 5.5  | 5         |
| 63 | Transitioning to Low-Carbon Residential Heating: The Impacts of Material-Related Emissions.<br>Environmental Science & Technology, 2022, 56, 8561-8570.                                                       | 10.0 | 5         |
| 64 | Nitrogen pollution in the European Union – an economy-environment confrontation. Environmental<br>Conservation, 1996, 23, 198-206.                                                                            | 1.3  | 4         |
| 65 | Substance flows through the economy and environment of a region. Environmental Science and Pollution Research, 1997, 4, 112-112.                                                                              | 5.3  | 2         |
| 66 | Wachstum ohne Umweltverbrauch? Entkopplung und Dematerialisierung als Trends. , 2008, , 202-217.                                                                                                              |      | 1         |
| 67 | Metabolic Side Effects of Transitions. Journal of Industrial Ecology, 2011, 15, 646-648.                                                                                                                      | 5.5  | 0         |