
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7558464/publications.pdf Version: 2024-02-01

YVES ROULU ÃO

#	Article	IF	CITATIONS
1	A Photoactivable Natural Product with Broad Antiviral Activity against Enveloped Viruses, Including Highly Pathogenic Coronaviruses. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0158121.	1.4	16
2	Processing and Subcellular Localization of the Hepatitis E Virus Replicase: Identification of Candidate Viral Factories. Frontiers in Microbiology, 2022, 13, 828636.	1.5	16
3	Clofoctol inhibits SARS-CoV-2 replication and reduces lung pathology in mice. PLoS Pathogens, 2022, 18, e1010498.	2.1	8
4	Ultrastructural modifications induced by SARS-CoV-2 in Vero cells: a kinetic analysis of viral factory formation, viral particle morphogenesis and virion release. Cellular and Molecular Life Sciences, 2021, 78, 3565-3576.	2.4	55
5	Comparative Analysis of Hepatitis C Virus NS5A Dynamics and Localization in Assembly-Deficient Mutants. Pathogens, 2021, 10, 172.	1.2	2
6	Secretory Vesicles Are the Principal Means of SARS-CoV-2 Egress. Cells, 2021, 10, 2047.	1.8	37
7	Anti-HCV Tannins From Plants Traditionally Used in West Africa and Extracted With Green Solvents. Frontiers in Pharmacology, 2021, 12, 789688.	1.6	2
8	The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. Journal of Biological Chemistry, 2019, 294, 14406-14421.	1.6	100
9	Dehydrojuncusol, a Natural Phenanthrene Compound Extracted from <i>Juncus maritimus</i> , Is a New Inhibitor of Hepatitis C Virus RNA Replication. Journal of Virology, 2019, 93, .	1.5	24
10	QuantIF: An ImageJ Macro to Automatically Determine the Percentage of Infected Cells after Immunofluorescence. Viruses, 2019, 11, 165.	1.5	33
11	Functional and Physical Interaction between the Arf Activator GBF1 and Hepatitis C Virus NS3 Protein. Journal of Virology, 2019, 93, .	1.5	16
12	Identification of Piperazinylbenzenesulfonamides as New Inhibitors of Claudin-1 Trafficking and Hepatitis C Virus Entry. Journal of Virology, 2018, 92, .	1.5	12
13	Natural Products and Hepatitis C Virus. Sustainable Development and Biodiversity, 2018, , 289-327.	1.4	4
14	Identification of GBF1 as a cellular factor required for hepatitis E virus RNA replication. Cellular Microbiology, 2018, 20, e12804.	1.1	28
15	Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS ONE, 2018, 13, e0198226.	1.1	63
16	Investigation of the role of GBF1 in the replication of positive-sense single-stranded RNA viruses. Journal of General Virology, 2018, 99, 1086-1096.	1.3	18
17	Endospanin-2 enhances skeletal muscle energy metabolism and running endurance capacity. JCI Insight, 2018, 3, .	2.3	4
18	Endospanin1 affects oppositely body weight regulation and glucose homeostasis by differentially regulating central leptin signaling. Molecular Metabolism, 2017, 6, 159-172.	3.0	11

#	Article	lF	CITATIONS
19	Identification of Novel Functions for Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. Journal of Virology, 2017, 91, .	1.5	29
20	Novel replicons and trans -encapsidation systems for Hepatitis C Virus proteins live imaging and virus-host interaction proteomics. Journal of Virological Methods, 2017, 246, 42-50.	1.0	1
21	An ecological approach to discover new bioactive extracts and products: the case of extremophile plants. Journal of Pharmacy and Pharmacology, 2017, 69, 1041-1055.	1.2	14
22	Entry and Release of Hepatitis C Virus in Polarized Human Hepatocytes. Journal of Virology, 2017, 91, .	1.5	18
23	Identification of a New Benzimidazole Derivative as an Antiviral against Hepatitis C Virus. Journal of Virology, 2016, 90, 8422-8434.	1.5	33
24	Recent advances in human viruses imaging studies. Journal of Basic Microbiology, 2016, 56, 591-607.	1.8	5
25	Identification of class II ADP-ribosylation factors as cellular factors required for hepatitis C virus replication. Cellular Microbiology, 2016, 18, 1121-1133.	1.1	28
26	Khaya grandifoliola C.DC: a potential source of active ingredients against hepatitis C virus in vitro. Archives of Virology, 2016, 161, 1169-1181.	0.9	14
27	Hexim1, a Novel Regulator of Leptin Function, Modulates Obesity and Glucose Disposal. Molecular Endocrinology, 2016, 30, 314-324.	3.7	7
28	Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope. PLoS Pathogens, 2016, 12, e1005476.	2.1	50
29	Plant extracts from Cameroonian medicinal plants strongly inhibit hepatitis C virus infection in vitro. Frontiers in Microbiology, 2015, 6, 488.	1.5	22
30	New Insights into the Understanding of Hepatitis C Virus Entry and Cell-to-Cell Transmission by Using the Ionophore Monensin A. Journal of Virology, 2015, 89, 8346-8364.	1.5	18
31	Polyphenols Inhibit Hepatitis C Virus Entry by a New Mechanism of Action. Journal of Virology, 2015, 89, 10053-10063.	1.5	116
32	Regulation of core expression during the hepatitis C virus life cycle. Journal of General Virology, 2015, 96, 311-321.	1.3	13
33	FTO contributes to hepatic metabolism regulation through regulation of leptin action and STAT3 signalling in liver. Cell Communication and Signaling, 2014, 12, 4.	2.7	47
34	Potent antiviral activity of Solanum rantonnetii and the isolated compounds against hepatitis C virus in vitro. Journal of Functional Foods, 2014, 11, 185-191.	1.6	9
35	Structure–activity studies of (â^')-epigallocatechin gallate derivatives as HCV entry inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4162-4165.	1.0	16
36	Hepatitis C Virus Life Cycle and Lipid Metabolism. Biology, 2014, 3, 892-921.	1.3	83

#	Article	IF	CITATIONS
37	Hepatitis C Virus Capsid Protein and Intracellular Lipids Interplay and itsAssociation With Hepatic Steatosis. Hepatitis Monthly, 2014, 14, e17812.	0.1	6
38	Hepatitis C Virus Replication and Golgi Function in Brefeldin A-Resistant Hepatoma-Derived Cells. PLoS ONE, 2013, 8, e74491.	1.1	9
39	Hepatitis C Virus and Natural Compounds: A New Antiviral Approach?. Viruses, 2012, 4, 2197-2217.	1.5	118
40	Role of low-density lipoprotein receptor in the hepatitis C virus life cycle. Hepatology, 2012, 55, 998-1007.	3.6	140
41	(â^')-Epigallocatechin- 3 -gallate is a new inhibitor of hepatitis C virus entry. Hepatology, 2012, 55, 720-729.	3.6	221
42	HCV replication and assembly: a play in one act. Future Virology, 2011, 6, 985-995.	0.9	3
43	Hepatocyte-derived cultured cells with unusual cytoplasmic keratin-rich spheroid bodies. Experimental Cell Research, 2011, 317, 2683-2694.	1.2	1
44	Endospanins Regulate a Postinternalization Step of the Leptin Receptor Endocytic Pathway. Journal of Biological Chemistry, 2011, 286, 17968-17981.	1.6	39
45	Hepatitis C Virus Assembly Imaging. Viruses, 2011, 3, 2238-2254.	1.5	20
46	NS2 Protein of Hepatitis C Virus Interacts with Structural and Non-Structural Proteins towards Virus Assembly. PLoS Pathogens, 2011, 7, e1001278.	2.1	142
47	Identification of a dominant endoplasmic reticulum-retention signal in yellow fever virus pre-membrane protein. Journal of General Virology, 2010, 91, 404-414.	1.3	13
48	Identification of Basic Amino Acids at the N-Terminal End of the Core Protein That Are Crucial for Hepatitis C Virus Infectivity. Journal of Virology, 2010, 84, 12515-12528.	1.5	31
49	Identification of GBF1 as a Cellular Factor Required for Hepatitis C Virus RNA Replication. Journal of Virology, 2010, 84, 773-787.	1.5	121
50	LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice. Journal of Clinical Investigation, 2009, 119, 3830-3838.	3.9	47
51	Silencing of OB-RGRP in mouse hypothalamic arcuate nucleus increases leptin receptor signaling and prevents diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19476-19481.	3.3	92
52	Robust production of infectious viral particles in Huh-7 cells by introducing mutations in hepatitis C virus structural proteins. Journal of General Virology, 2007, 88, 2495-2503.	1.3	133
53	Ubiquitylation of leptin receptor OB-Ra regulates its clathrin-mediated endocytosis. EMBO Journal, 2006, 25, 932-942.	3.5	59
54	Subcellular Localization of Hepatitis C Virus Structural Proteins in a Cell Culture System That Efficiently Replicates the Virus. Journal of Virology, 2006, 80, 2832-2841.	1.5	178

#	Article	IF	CITATIONS
55	Hepatitis C Virus Entry Depends on Clathrin-Mediated Endocytosis. Journal of Virology, 2006, 80, 6964-6972.	1.5	480
56	Significance of Prohormone Convertase 2, PC2, Mediated Initial Cleavage at the Proglucagon Interdomain Site, Lys70-Arg71, to Generate Clucagon. Endocrinology, 2005, 146, 713-727.	1.4	37
57	Interactions Between Virus Proteins and Host Cell Membranes During the Viral Life Cycle. International Review of Cytology, 2005, 245, 171-244.	6.2	50
58	Bovine Viral Diarrhea Virus Entry Is Dependent on Clathrin-Mediated Endocytosis. Journal of Virology, 2005, 79, 10826-10829.	1.5	72
59	Low Levels of Expression of Leptin Receptor at the Cell Surface Result from Constitutive Endocytosis and Intracellular Retention in the Biosynthetic Pathway. Journal of Biological Chemistry, 2004, 279, 28499-28508.	1.6	74
60	The Transmembrane Domains of the prM and E Proteins of Yellow Fever Virus Are Endoplasmic Reticulum Localization Signals. Journal of Virology, 2004, 78, 12591-12602.	1.5	35
61	Visualization of TGN to Endosome Trafficking through Fluorescently Labeled MPR and AP-1 in Living Cells. Molecular Biology of the Cell, 2003, 14, 142-155.	0.9	171
62	Yeast Vps55p, a Functional Homolog of Human Obesity Receptor Gene-related Protein, Is Involved in Late Endosome to Vacuole Trafficking. Molecular Biology of the Cell, 2002, 13, 1694-1708.	0.9	40
63	Dynamic Processing of Neuropeptides. Journal of Molecular Neuroscience, 2002, 18, 223-228.	1.1	50
64	Targeting of lysosomal proteins. Seminars in Cell and Developmental Biology, 2000, 11, 165-171.	2.3	37
65	Unique evolution of neurohypophysial hormones in cartilaginous fishes: Possible implications for urea-based osmoregulation. , 1999, 284, 475-484.		31
66	Role of the Prohormone Convertase PC3 in the Processing of Proglucagon to Glucagon-like Peptide 1. Journal of Biological Chemistry, 1997, 272, 32810-32816.	1.6	88
67	Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6646-6651.	3.3	404
68	Role of the prohormone convertase PC2 in the processing of proglucagon to glucagon. FEBS Letters, 1997, 413, 119-123.	1.3	61
69	Title is missing!. Fish Physiology and Biochemistry, 1997, 17, 325-332.	0.9	13
70	Adaptive evolution of water homeostasis regulation in amphibians: Vasotocin and hydrins. , 1997, 89, 283.		10
71	Internal cleavage of the inhibitory 7B2 carboxyl-terminal peptide by PC2: a potential mechanism for its inactivation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4919-4924.	3.3	87
72	Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nature Genetics, 1995, 10, 135-142.	9.4	662

#	Article	IF	CITATIONS
73	Distinct hydro-osmotic receptors for the neurohypophysial peptides vasotocin and hydrins in the frog Rana esculenta. Neuropeptides, 1995, 29, 301-307.	0.9	8
74	Proteolytic Processing Mechanisms in the Biosynthesis of Neuroendocrine Peptides: The Subtilisin-like Proprotein Convertases. Frontiers in Neuroendocrinology, 1995, 16, 322-361.	2.5	334
75	Differential Processing of Proglucagon by the Subtilisin-like Prohormone Convertases PC2 and PC3 to Generate either Glucagon or Glucagon-like Peptide. Journal of Biological Chemistry, 1995, 270, 26488-26496.	1.6	193
76	Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3242-3246.	3.3	212
77	Action of neurohypophysial granule Lys-Arg endopeptidase on synthetic polypeptides comprising the processing sequence of provasopressin-neurophysin. Bioscience Reports, 1994, 14, 171-178.	1.1	2
78	Special evolution of neurohypophysial hormones in cartilaginous fishes: asvatocin and phasvatocin, two oxytocin-like peptides isolated from the spotted dogfish (Scyliorhinus caniculus) Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11266-11270.	3.3	21
79	Evidence for distinct dibasic processing endopeptidases with Lys-Arg and Arg-Arg specificities in neurohypophysial secretory granules. Biochemical and Biophysical Research Communications, 1992, 183, 128-137.	1.0	11
80	Processing endopeptidase deficiency in neurohypohysial secretory granules of the diabetes insipidus (Brattleboro) rat. Bioscience Reports, 1992, 12, 445-451.	1.1	4
81	A neurosecretory granule Lys-Arg Ca2+-dependent endopeptidase putatively involved in prooxytocin and provasopressin processing. Neuropeptides, 1992, 22, 223-228.	0.9	7
82	The differential posttranslational processing of prohormones: The vasotocin/hydrin-neurophysin model. The Protein Journal, 1992, 11, 385-386.	1.1	0
83	Neurohypophysial hormones as molecular evolutionary tracers: investigations on the sturgeons Acipenser stellatus and Acipenser guldenstadti. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 100, 721-726.	0.2	2
84	Heterologue Conversion of Amphibian Hydrin 2 into Vasotocin Through Bovine Granule Alpha-Amidating Enzyme. Journal of Neuroendocrinology, 1991, 3, 15-20.	1.2	9
85	Study of frog (<i>Rana esculenta</i>) proopiomelanocortin processing in the intermediate pituitary Identification of αâ€melanotropin, βâ€melanotropin, Lysâ€i³â€melanotropin, and corticotropinâ€like intermedia Iobe peptide. International Journal of Peptide and Protein Research, 1991, 37, 236-240.	t @.1	3
86	Occurrence of Hydrin 2 (Vasotocinyl-GLY), a New Hydroosmotic Neurohypophyseal Peptide, in Secretory Granules Isolated from the Frog (<i>Rana esculenta</i>) Neurointermediate Pituitary. Neuroendocrinology, 1990, 51, 233-236.	1.2	16
87	Identification of two types of neurophysins in Xenopus laevis neurointermediate pituitary homologous to mammalian MSEL- and VLDV-neurophysins. Neuropeptides, 1990, 15, 123-127.	0.9	3
88	Evolutionary specificity of hydrins, new hydroosmotic neuropeptides: occurrence of hydrin 2 (vasotocinyl-Gly) in the toad Bufo marinus but not in the viper Vipera aspis. FEBS Letters, 1990, 264, 135-137.	1.3	16
89	Isolation of neurosecretory granules containing vasotocin, mesotocin, MSEL- and VLDV-neurophysins from goose neurohypophysis. Neuropeptides, 1989, 13, 187-190.	0.9	12
90	Particular processing of pro-opiomelanocortin in Xenopus laevis intermediate pituitary Sequencing of α- and β-melanocyte-stimulating hormones. FEBS Letters, 1989, 245, 215-218.	1.3	13

#	Article	IF	CITATIONS
91	Hydrins, hydroosmotic neurohypophysial peptides: osmoregulatory adaptation in amphibians through vasotocin precursor processing Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 5272-5275.	3.3	43
92	The distribution of lysine vasopressin (Lysipressin) in placental mammals: A reinvestigation of the hippopotamidae (Hippopotamus amphibius) and tayassuidae (Tayassu angulatus) families. General and Comparative Endocrinology, 1988, 71, 475-483.	0.8	6
93	Dual duplication of neurohypophysial hormones in an Australian marsupial: Mesotocin, oxytocin, lysine vasopressin and arginine vasopressin in a single gland of the Northern bandicoot (Isoodon) Tj ETQq1 1 0.75	84 B0 4 rgE	T 19 verlock
94	Neurohypophysial hormones of the 1-month-old bovine fetus: Absence of vasotocin during mammal development. FEBS Letters, 1988, 234, 345-348.	1.3	0
95	Isolation of neurosecretory granules containing vasopressin and MSEL-neurophysin from guinea pig neurointermediate pituitary. Neuropeptides, 1988, 11, 33-37.	0.9	9
96	Guinea pig neurohypophysial hormones. FEBS Letters, 1987, 210, 40-44.	1.3	9
97	Evolution of marsupials traced by their neurohypophyseal hormones: Microidentification of mesotocin and arginine vasopressin in two Australian families, Dasyuridae and Phascolarctidae. General and Comparative Endocrinology, 1987, 67, 399-408.	0.8	11