
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7558460/publications.pdf Version: 2024-02-01

HEDVÃO FALET

#	Article	IF	CITATIONS
1	Clinical impact of glycans in platelet and megakaryocyte biology. Blood, 2022, 139, 3255-3263.	0.6	5
2	Novel GNE Gene Variants Associated with Severe Congenital Thrombocytopenia and Platelet Sialylation Defect. Thrombosis and Haemostasis, 2022, 122, 1139-1146.	1.8	14
3	Sialic acid and platelet count regulation: Implications in immune thrombocytopenia. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12691.	1.0	4
4	Bleeding diathesis in mice lacking JAK2 in platelets. Blood Advances, 2021, 5, 2969-2981.	2.5	7
5	Circulating platelet count and glycans. Current Opinion in Hematology, 2021, 28, 431-437.	1.2	2
6	Dynamin 2 is required for GPVI signaling and platelet hemostatic function in mice. Haematologica, 2020, 105, 1414-1423.	1.7	8
7	β4GALT1 controls β1 integrin function to govern thrombopoiesis and hematopoietic stem cell homeostasis. Nature Communications, 2020, 11, 356.	5.8	34
8	Bleeding Diathesis in Mice Lacking JAK2 in Platelets. Blood, 2020, 136, 12-12.	0.6	0
9	Platelet Glycobiology and the Control of Platelet Function and Lifespan. , 2019, , 79-97.		2
10	M6PR-Specific Targeting of Lysosomal Heparanase Regulates Platelet Hemostatic Function in Mice. Blood, 2019, 134, 1059-1059.	0.6	16
11	Decreased thromboembolic stroke but not atherosclerosis or vascular remodelling in mice with ROCK2-deficient platelets. Cardiovascular Research, 2017, 113, 1307-1317.	1.8	22
12	Anatomy of the Platelet Cytoskeleton. , 2017, , 139-156.		8
13	Singling out FLI1 in Paris-Trousseau syndrome. Blood, 2017, 129, 3399-3401.	0.6	1
14	Intracellular Trafficking, Localization, and Mobilization of Platelet-Borne Thiol Isomerases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1164-1173.	1.1	50
15	Glycans and the platelet life cycle. Platelets, 2016, 27, 505-511.	1.1	58
16	Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thrombosis Research, 2016, 141, S68-S72.	0.8	60
17	FInA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets. Blood, 2015, 126, 80-88.	0.6	52
18	Dynamin 2–dependent endocytosis is required for normal megakaryocyte development in mice. Blood, 2015, 125, 1014-1024.	0.6	39

#	Article	IF	CITATIONS
19	Regulating billions of blood platelets: glycans and beyond. Blood, 2015, 126, 1877-1884.	0.6	118
20	Novel mechanisms of platelet clearance and thrombopoietin regulation. Current Opinion in Hematology, 2015, 22, 445-451.	1.2	53
21	The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nature Medicine, 2015, 21, 47-54.	15.2	257
22	Desialylated Platelets: A Missing Link in Hepatic Thrombopoietin Regulation. , 2015, 12, .		0
23	Dynamin 2â€Dependent Endocytosis is Required For Normal Megakaryocyte Development. FASEB Journal, 2015, 29, 893.22.	0.2	О
24	Megakaryocyte-specific Profilin1-deficiency alters microtubule stability and causes a Wiskott–Aldrich syndrome-like platelet defect. Nature Communications, 2014, 5, 4746.	5.8	81
25	Post-translational arginylation as a novel regulator of platelet function. Haematologica, 2014, 99, 402-404.	1.7	2
26	Platelets Regulate Thrombopoietin Production: The Missing Link. Blood, 2014, 124, SCI-52-SCI-52.	0.6	3
27	Dynamin 2-Dependent Endocytosis Regulates Megakaryopoiesis. Blood, 2014, 124, 339-339.	0.6	0
28	The F-BAR Protein PACSIN2 Regulates Platelet Intracellular Membrane Architecture and in Vivo Hemostatic Functions. Blood, 2014, 124, 4154-4154.	0.6	0
29	The Ashwell-Morell Receptor Regulates Hepatic Thrombopoietin Production Via JAK2-STAT3 Signaling in Vivo and in Vitro. Blood, 2014, 124, 2-2.	0.6	1
30	Aberrant Microtubule Organization and Wiskott-Aldrich Syndrome-like Defects in Platelets and Megakaryocytes of Profilin1-Deficient Mice. Blood, 2014, 124, 4200-4200.	0.6	0
31	New insights into the versatile roles of platelet FlnA. Platelets, 2013, 24, 1-5.	1.1	30
32	Wiskott-Aldrich Syndrome Protein (WASp) Controls the Delivery of Platelet Transforming Growth Factor-l²1. Journal of Biological Chemistry, 2013, 288, 34352-34363.	1.6	16
33	Sitosterolemia: platelets on high-sterol diet. Blood, 2013, 122, 2534-2535.	0.6	4
34	Platelet size: finding the right balance. Blood, 2012, 119, 2702-2703.	0.6	2
35	Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice. Blood, 2012, 119, 1263-1273.	0.6	173
36	B cell–intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood, 2012, 119, 2819-2828.	0.6	99

#	Article	IF	CITATIONS
37	Gelsolin-Independent Podosome Formation in Dendritic Cells. PLoS ONE, 2011, 6, e21615.	1.1	11
38	FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly. Blood, 2011, 118, 2285-2295.	0.6	96
39	Inhibition of Sialic Acid Loss Greatly Improves Survival of Refrigerated Platelets. Blood, 2011, 118, 1133-1133.	0.6	0
40	Novel clearance mechanisms of platelets. Current Opinion in Hematology, 2010, 17, 585-589.	1.2	96
41	A novel interaction between FlnA and Syk regulates platelet ITAM-mediated receptor signaling and function. Journal of Experimental Medicine, 2010, 207, 1967-1979.	4.2	121
42	A novel interaction between FlnA and Syk regulates platelet ITAM-mediated receptor signaling and function. Journal of Cell Biology, 2010, 190, i11-i11.	2.3	0
43	Differential stimulation of monocytic cells results in distinct populations of microparticles. Journal of Thrombosis and Haemostasis, 2009, 7, 1019-1028.	1.9	125
44	Platelet-associated IgAs and impaired GPVI responses in platelets lacking WIP. Blood, 2009, 114, 4729-4737.	0.6	21
45	Impaired Viability, Platelet Survival, Morphology and Function in Mice Lacking Filamin A Blood, 2006, 108, 391-391.	0.6	0
46	Transgenic Expression of Human Platelet FcγRIIA (CD32A) in Mice Does Not Affect the Thrombocytopenia Associated with WASp Deficiency Blood, 2006, 108, 1106-1106.	0.6	1
47	Integrin αIIbβ3signals lead cofilin to accelerate platelet actin dynamics. American Journal of Physiology - Cell Physiology, 2005, 289, C819-C825.	2.1	34
48	Arp2/3 complex-deficient mouse fibroblasts are viable and have normal leading-edge actin structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16263-16268.	3.3	64
49	WIP Regulates Signaling via the High Affinity Receptor for Immunoglobulin E in Mast Cells. Journal of Experimental Medicine, 2004, 199, 357-368.	4.2	53
50	The Clearance Mechanism of Chilled Blood Platelets. Cell, 2003, 112, 87-97.	13.5	394
51	Structural Requirements of SLP-76 in Signaling via the High-Affinity Immunoglobulin E Receptor (FcÎμRI) in Mast Cells. Molecular and Cellular Biology, 2003, 23, 2395-2406.	1.1	38
52	Platelet moesin interacts with PECAM-1 (CD31). Platelets, 2003, 14, 211-217.	1.1	17
53	Impaired signaling via the high-affinity IgE receptor in Wiskott-Aldrich syndrome protein-deficient mast cells. International Immunology, 2003, 15, 1431-1440.	1.8	38
54	Mechanisms and implications of platelet discoid shape. Blood, 2003, 101, 4789-4796.	0.6	141

#	Article	IF	CITATIONS
55	Role for phosphoinositide 3-kinase in FcγRIIA-induced platelet shape change. American Journal of Physiology - Cell Physiology, 2003, 285, C797-C805.	2.1	15
56	Importance of free actin filament barbed ends for Arp2/3 complex function in platelets and fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16782-16787.	3.3	82
57	Purification of salmon thrombin and its potential as an alternative to mammalian thrombins in fibrin sealants. Thrombosis Research, 2002, 107, 245-254.	0.8	33
58	Dynamics of the platelet cytoskeleton. , 2002, , 93-103.		4
59	Normal Arp2/3 complex activation in platelets lacking WASp. Blood, 2002, 100, 2113-22.	0.6	27
60	Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells. Journal of Cell Biology, 2001, 155, 511-518.	2.3	167
61	Mechanisms of Cold-induced Platelet Actin Assembly. Journal of Biological Chemistry, 2001, 276, 24751-24759.	1.6	85
62	Tyrosine phosphorylation and association of FcÎ ³ RII and p72Syk are not limited to the FcÎ ³ RII signalling pathway. Cellular Signalling, 2000, 12, 165-171.	1.7	14
63	Calpain controls the balance between protein tyrosine kinase and tyrosine phosphatase activities during platelet activation. FEBS Letters, 1999, 453, 119-123.	1.3	5
64	Tyrosine Unphosphorylated Platelet SHP-1 Is a Substrate for Calpain. Biochemical and Biophysical Research Communications, 1998, 252, 51-55.	1.0	24
65	Association of the protein tyrosine phosphatase PTP1C with the protein tyrosine kinase c-Src in human platelets. FEBS Letters, 1996, 383, 165-169.	1.3	36
66	The phospholipase C/protein kinase C pathway is involved in cathepsin G-induced human platelet activation: comparison with thrombin. Biochemical Journal, 1996, 313, 401-408.	1.7	33
67	Calcium mobilisation controls tyrosine protein phosphorylation independently of the activation of protein kinase C in human platelets. FEBS Letters, 1994, 345, 87-91.	1.3	24