
Murat Barsbay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7558216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Verification of Controlled Grafting of Styrene from Cellulose via Radiation-Induced RAFT Polymerization. Macromolecules, 2007, 40, 7140-7147.	4.8	176
2	Current approaches to waste polymer utilization and minimization: a review. Journal of Chemical Technology and Biotechnology, 2019, 94, 8-21.	3.2	160
3	RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer, 2009, 50, 973-982.	3.8	115
4	CRISPR Systems for COVID-19 Diagnosis. ACS Sensors, 2021, 6, 1430-1445.	7.8	100
5	Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media. Radiation Physics and Chemistry, 2018, 142, 70-76.	2.8	70
6	A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner. Radiation Physics and Chemistry, 2009, 78, 1054-1059.	2.8	55
7	Nanopore size tuning of polymeric membranes using the RAFT-mediated radical polymerization. Journal of Membrane Science, 2013, 445, 135-145.	8.2	51
8	RAFT mediated grafting of poly(acrylic acid) (PAA) from polyethylene/polypropylene (PE/PP) nonwoven fabric via preirradiation. Polymer, 2013, 54, 4838-4848.	3.8	49
9	Radiation-induced and RAFT-mediated grafting of poly(hydroxyethyl methacrylate) (PHEMA) from cellulose surfaces. Radiation Physics and Chemistry, 2014, 94, 98-104.	2.8	46
10	Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. Nano Today, 2020, 34, 100895.	11.9	45
11	Functionalization of cellulose with epoxy groups via Î ³ -initiated RAFT-mediated grafting of glycidyl methacrylate. Cellulose, 2014, 21, 4067-4079.	4.9	42
12	Complete ablation of tumors using synchronous chemoradiation with bimetallic theranostic nanoparticles. Bioactive Materials, 2022, 7, 74-84.	15.6	41
13	Surface modification of cellulose via conventional and controlled radiation-induced grafting. Radiation Physics and Chemistry, 2019, 160, 1-8.	2.8	40
14	Nanostructuring of polymers by controlling of ionizing radiation-induced free radical polymerization, copolymerization, grafting and crosslinking by RAFT mechanism. Radiation Physics and Chemistry, 2020, 169, 107816.	2.8	34
15	Functionalized nanoporous track-etched β-PVDF membrane electrodes for lead(ii) determination by square wave anodic stripping voltammetry. Analytical Methods, 2011, 3, 1351.	2.7	33
16	The effect of oxidizing agents/systems on the properties of track-etched PET membranes. Polymer Degradation and Stability, 2014, 107, 150-157.	5.8	33
17	Towards new proton exchange membrane materials with enhanced performance via RAFT polymerization. Polymer Chemistry, 2016, 7, 701-714.	3.9	33
18	Grafting in confined spaces: Functionalization of nanochannels of track-etched membranes. Radiation Physics and Chemistry, 2014, 105, 26-30.	2.8	32

Murat Barsbay

#	Article	IF	CITATIONS
19	Poly(2-hydroxyethyl methacrylate) (PHEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fabric by γ-initiation: Synthesis, characterization and benefits of RAFT mediation. Radiation Physics and Chemistry, 2014, 105, 31-38.	2.8	31
20	Grafting of N,N-dimethylaminoethyl methacrylate from PE/PP nonwoven fabric via radiation-induced RAFT polymerization and quaternization of the grafts. Radiation Physics and Chemistry, 2016, 124, 145-154.	2.8	31
21	Miscibility of dextran and poly(ethylene glycol) in solid state: Effect of the solvent choice. Carbohydrate Polymers, 2007, 69, 214-223.	10.2	30
22	A smartphone-based colorimetric PET sensor platform with molecular recognition via thermally initiated RAFT-mediated graft copolymerization. Sensors and Actuators B: Chemical, 2019, 296, 126653.	7.8	29
23	Activation of Polyethylene/Polypropylene Nonwoven Fabric by Radiation-Induced Grafting for the Removal of Cr(VI) from Aqueous Solutions. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	25
24	Amine functionalization of cellulose surface grafted with glycidyl methacrylate by Î ³ -initiated RAFT polymerization. Radiation Physics and Chemistry, 2016, 124, 140-144.	2.8	25
25	Iron oxide and gold bimetallic radiosensitizers for synchronous tumor chemoradiation therapy in 4T1 breast cancer murine model. Journal of Materials Chemistry B, 2021, 9, 4510-4522.	5.8	22
26	Removal of phosphate using copper-loaded polymeric ligand exchanger prepared by radiation grafting of polypropylene/polyethylene (PP/PE) nonwoven fabric. Radiation Physics and Chemistry, 2010, 79, 227-232.	2.8	21
27	Preparation of well-defined erythromycin imprinted non-woven fabrics via radiation-induced RAFT-mediated grafting. Radiation Physics and Chemistry, 2018, 142, 77-81.	2.8	21
28	Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III). Nanomaterials, 2020, 10, 1552.	4.1	21
29	Method for preparing a well-defined molecularly imprinted polymeric system via radiation-induced RAFT polymerization. European Polymer Journal, 2018, 103, 21-30.	5.4	20
30	Application of Silver-Loaded Composite Track-Etched Membranes for Photocatalytic Decomposition of Methylene Blue under Visible Light. Membranes, 2021, 11, 60.	3.0	18
31	A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. Nanomaterials, 2022, 12, 1724.	4.1	16
32	Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes. Membranes, 2021, 11, 116.	3.0	14
33	Modification of polystyrene cell-culture-dish surfaces by consecutive grafting of poly(acrylamide)/poly(N-isopropylacrylamide) via reversible addition-fragmentation chain transfer-mediated polymerization. European Polymer Journal, 2021, 147, 110330.	5.4	14
34	Effect of brush length of stabilizing grafted matrix on size and catalytic activity of metal nanoparticles. European Polymer Journal, 2020, 134, 109811.	5.4	13
35	Green and Facile Synthesis of Pullulan-Stabilized Silver and Cold Nanoparticles for the Inhibition of Quorum Sensing. ACS Applied Bio Materials, 2022, 5, 517-527.	4.6	13
36	Synthesis of new hydrogels based on the macromolecular reaction of citraconic anhydride copolymers withγ-aminopropyltriethoxysilane (APTS). Polymers for Advanced Technologies, 2005, 16, 32-37.	3.2	10

MURAT BARSBAY

#	Article	IF	CITATIONS
37	Miscibility of dextran and poly(ethylene glycol) in dilute aqueous solutions. II. Effect of temperature and composition. Journal of Applied Polymer Science, 2006, 100, 4587-4594.	2.6	8
38	Functionalization of poly(esterâ€urethane) surface by radiationâ€induced grafting of <i>N</i> â€isopropylacrylamide using conventional and reversible addition–fragmentation chain transferâ€mediated methods. Polymer International, 2016, 65, 192-199.	3.1	7
39	Synthesis of well-defined molecularly imprinted bulk polymers for the removal of azo dyes from water resources. Current Research in Green and Sustainable Chemistry, 2021, 4, 100196.	5.6	7
40	Design and Properties of New Functional Water ? Soluble Polymers of Citraconic Anhydride (CA) and Related Copolymers. Polymer Bulletin, 2005, 53, 305-314.	3.3	5
41	An innovative green approach to the production of bio-sourced and nano-sized graphene oxide (GO)-like carbon flakes. Current Research in Green and Sustainable Chemistry, 2021, , 100200.	5.6	5
42	Curcumin delivery by modified biosourced carbon-based nanoparticles. Nanomedicine, 2022, 17, 95-105.	3.3	5
43	Metronidazole conjugated bismuth sulfide nanoparticles for enhanced X-ray radiation therapy. Journal of Drug Delivery Science and Technology, 2022, 71, 103336.	3.0	4
44	Functionalized Nanoporous Track-Etched b-PVDF Membrane Electrodes for Heavy Metal Determination by Square-Wave Anodic Stripping Voltammetry. E3S Web of Conferences, 2013, 1, 37006.	0.5	3
45	Experimental and theoretical approaches to investigating the miscibility of anhydride-containing copolymers and dextran. Journal of Applied Polymer Science, 2006, 102, 2132-2141.	2.6	2
46	A porous fabric-based molecularly imprinted polymer for specific recognition of tetracycline by radiation-induced RAFT-mediated graft copolymerization. Radiation Physics and Chemistry, 2022, 199, 110314.	2.8	2
47	Modification of cellulose by RAFT mediated graft copolymerization. Hacettepe Journal of Biology and Chemistry, 2014, 1, 1-1.	0.9	1
48	One-pot modification of oleate-capped UCNPs with AS1411 G-quadruplex DNA in a fully aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128675.	4.7	1