Nicolas Gisin

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/7558167/publications.pdf
Version: 2024-02-01

$1 \quad$ Full Network Nonlocality. Physical Review Letters, 2022, 128, 010403. 7.8
Testing Real Quantum Theory in an Optical Quantum Network. Physical Review Letters, 2022, 128, 040402.
7.8
Entanglement Swapping and Quantum Correlations via Symmetric Joint Measurements. Physical Review Letters, 2022, 129, .

Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?.

Bilocal Bell Inequalities Violated by the Quantum Elegant Joint Measurement. Physical Review Letters,
7.8

2021, 126, 220401.
38

6 Demonstrating the power of quantum computers, certification of highly entangled measurements and
6.7
scalable quantum nonlocality. Npj Quantum Information, 2021, 7, .
16
$7 \quad$ Indeterminism in physics and intuitionistic mathematics. SynthÃ^se, 2021, 199, 13345-13371.
1.1

13

8 The Relativity of Indeterminacy. Entropy, 2021, 23, 1326.
2.2

8
9 Nonlocal boxes for networks. Physical Review A, 2021, 104, 2.511 Real numbers are the hidden variables of classical mechanics. Quantum Studies: Mathematics andFoundations, 2020, 7, 197-201.

A neural network oracle for quantum nonlocality problems in networks. Npj Quantum Information, 2020, 6, .

15 Constraints on nonlocality in networks from no-signaling and independence. Nature
Communications, 2020, 11, 2378.

Optical storage for 0.53 s in a solid-state atomic frequency comb memory using dynamical decoupling.
New Journal of Physics, 2020, 22, 063009.
key distribution. Physical Review Research, 2020, 2, .
$3.6 \quad 7$
21 Does large quantum Fisher information imply Bell correlations?. Physical Review A, 2019, 99,. 2.5

22 Entanglement 25 Years after Quantum Teleportation: Testing Joint Measurements in Quantum
Networks. Entropy, 2019, 21, 325.Characterization of the hyperfine interaction of the excited D05 state of Eu3+:Y2SiO5. Physical Review
B, 2018, 97,.B, 2018, 97, .
14Robust Macroscopic Quantum Measurements in the Presence of Limited Control and Knowledge.Entropy, 2018, 20, 39.
$2.2 \quad 1$
2627 Semi-device-independent characterization of multipartite entanglement of states and measurements.Physical Review A, 2018, 98, .
29 Macroscopic quantum states: Measures, fragility, and implementations. Reviews of Modern Physics, 2018, 90, .
45.6 110
30 Quantum Measurements, Energy Conservation and Quantum Clocks. Annalen Der Physik, 2018, 530, 1700388.2.47
31 Why Bohmian Mechanics? One- and Two-Time Position Measurements, Bell Inequalities, Philosophy, and 2.2 20
Physics. Entropy, 2018, 20, 105.Universal bound on the cardinality of local hidden variables in networks. Quantum Information and

37	All entangled pure quantum states violate the bilocality inequality. Physical Review A, 2017, 96, .	2.5	67
38	Correlations in star networks: from Bell inequalities to network inequalities. New Journal of Physics, 2017, 19, 073003.	2.9	38
39	Macroscopic quantum measurements of noncommuting observables. Physical Review A, 2017, 96, .	2.5	4
40	Multimode and Long-Lived Quantum Correlations Between Photons and Spins in a Crystal. Physical Review Letters, 2017, 118, 210501.	7.8	78
41	Time Really Passes, Science Canâ $€^{\text {TM } t ~ D e n y ~ T h a t . ~ T u t o r i a l s, ~ S c h o o l s, ~ a n d ~ W o r k s h o p s ~ i n ~ t h e ~ M a t h e m a t i c a l ~}$ Sciences, 2017, , 1-15.	0.3	8
42	Towards highly multimode optical quantum memory for quantum repeaters. Physical Review A, 2016, 93, .	2.5	80
43	Quantum Nonlocality with Arbitrary Limited Detection Efficiency. Physical Review Letters, 2016, 116, 010401.	7.8	8

44 Nonlinear Bell Inequalities Tailored for Quantum Networks. Physical Review Letters, 2016, 116, 010403. 7.8
Demonstration of Light-Matter Micro-Macro Quantum Correlations. Physical Review Letters, 2016, 116,
190502.
Tighter quantum uncertainty relations following from a general probabilistic bound. Physical Review2.523
46 A, 2015, 92, .
47 Demonstration of Quantum Nonlocality in the Presence of Measurement Dependence. Physical Review Letters, 2015, 114, 220404.
7.819
Multiple Observers Can Share the Nonlocality of Half of an Entangled Pair by Using Optimal Weak 48 Measurements. Physical Review Letters, 2015, 114, 250401. 7.8 9849 Exploring the Limits of Quantum Nonlocality with Entangled Photons. Physical Review X, 2015, 5, .8.940
50 How far can one send a photon?. Frontiers of Physics, 2015, 10, 1. 5.0 22
51 Nonlocality ofWand Dicke states subject to losses. Physical Review A, 2015, 91, 2.5 21

\#	Article	IF	Citations
55	Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory. Physical Review Letters, 2015, 114, 230502.	7.8	135
56	Family of Bell-like Inequalities as Device-Independent Witnesses for Entanglement Depth. Physical Review Letters, 2015, 114, 190401.	7.8	56
57	Can Relativity be Considered Complete? From Newtonian Nonlocality to Quantum Nonlocality and Beyond. Lecture Notes in Physics, 2015, , 195-217.	0.7	2
58	Arbitrarily Small Amount of Measurement Independence Is Sufficient to Manifest Quantum Nonlocality. Physical Review Letters, 2014, 113, 190402.	7.8	65
59	Anonymous Quantum Nonlocality. Physical Review Letters, 2014, 113, 130401.	7.8	14
60	How Difficult Is It to Prove the Quantumness of Macroscropic States?. Physical Review Letters, 2014, 113, 090403.	7.8	35
61	Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nature Photonics, 2014, 8, 775-778.	31.4	208
62	Heralded Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics. Physical Review Letters, 2014, 112, 143602.	7.8	109
63	Strong Constraints on Models that Explain the Violation of Bell Inequalities with Hidden Superluminal Influences. Foundations of Physics, 2014, 44, 523-531.	1.3	9
64	Quantum Chance., 2014, , .		11
65	Quantum Correlations in Newtonian Space and Time:. , 2014, , 185-203.		4
66	Oblivious transfer and quantum channels as communication resources. Natural Computing, 2013, 12, 13-17.	3.0	4
67	Definitions of multipartite nonlocality. Physical Review A, 2013, 88, .	2.5	138
68	Demonstration of genuine multipartite entanglement with device-independent witnesses. Nature Physics, 2013, 9, 559-562.	16.7	60
69	Device-Independent Quantum Key Distribution with Local Bell Test. Physical Review X, 2013, 3,	8.9	52

70 A long-lived solid-state quantum memory. , 2013, , .

71 Tripartite quantum state violating the hidden-influence constraints. Physical Review A, 2013, 88, .

73	Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature. Journal of Applied Physics, 2012, 112, 063106.	2.5	47
74	Local content of all pure two-qubit states. Physical Review A, 2012, 86, .	2.5	14
75	Bell inequalities for three systems and arbitrarily many measurement outcomes. Physical Review A, 2012, 85, .	2.5	18
76	Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Physical Review A, 2012, 85, .	2.5	153
77	Nonlocal multipartite correlations from local marginal probabilities. Physical Review A, 2012, 86,	2.5	19
78	Proposal for exploring macroscopic entanglement with a single photon and coherent states. Physical Review A, 2012, 86, .	2.5	52
79	Heralded quantum entanglement between two crystals. Nature Photonics, 2012, 6, 234-237.	31.4	120

80 Non-realism: Deep Thought or a Soft Option?. Foundations of Physics, 2012, 42, 80-85.

81	Quantum repeaters based on atomic ensembles and linear optics. Reviews of Modern Physics, 2011, 83, 33-80.	45.6	1,412
82	Photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth-metal-doped solids. Physical Review A, 2011, 83, .	2.5	24
83	Practical private database queries based on a quantum-key-distribution protocol. Physical Review A, 2011, 83, .	2.5	178
84	Cloning entangled photons to scales one can see. Physical Review A, 2010, 82, .	2.5	32
85	Impossibility of faithfully storing single photons with the three-pulse photon echo. Physical Review A, 2010, 81,.	2.5	30
86	Local content of bipartite qubit correlations. Physical Review A, 2010, 81, .	2.5	10
87	Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier. Physical Review Letters, 2010, 105, 070501.	7.8	238
88	Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nature Communications, 2010, 1, 12.	12.8	177
89	Creating single collective atomic excitations via spontaneous Raman emission in inhomogeneously broadened systems: Beyond the adiabatic approximation. Physical Review A, 2009, 79, .	2.5	12

Improved implementation of the Alickiâ "Van Ryn nonclassicality test for a single particle
usingSidetectors. Physical Review A, 2009, 79,.

Bell Inequalities: Many Questions, a Few Answers. The Western Ontario Series in Philosophy of Science, 2009, , 125-138.

Quantum Nonlocality: How Does Nature Do It?. Science, 2009, 326, 1357-1358.
12.6

43
93 Quantum Nonlocality: How Does Nature Do It?. Science, 2009, 326, 1357-1358. 42.6

94 Device-independent quantum key distribution secure against collective attacks. New Journal of Physics, 2009, 11, 045021.

Testing quantum correlations versus single-particle properties within Leggettâ $€^{T M} s$ Âmodel and beyond.
Nature Physics, 2008, 4, 681-685.
105 Robust and efficient quantum repeaters with atomic ensembles and linear optics. Physical Review A,
2008, 77, .2.5135PSEUDO-TELEPATHY: INPUT CARDINALITY AND BELL-TYPE INEQUALITIES. International Journal of Quantum1.1Information, 2007, 05, 525-534.Quantum Repeaters with Photon Pair Sources and Multimode Memories. Physical Review Letters, 2007,98, 190503.7.8447
109 Long-distance entanglement distribution with single-photon sources. Physical Review A, 2007, 76, . 2.5173

110 Storage and retrieval of time-bin qubits with photon-echo-based quantum memories. Physical Review
115 From Bellâ $€^{\text {TM }}$ S Theorem to Secure Quantum Key Distribution. Physical Review Letters, 2006, 97, 120405. 520
The Physics of No-Bit-Commitment: Generalized Quantum Non-Locality Versus Oblivious Transfer.Quantum Information Processing, 2006, 5, 131-138.2.2
117 Information-theoretic security proof for quantum-key-distribution protocols. Physical Review A, 2005, 72, 2.5 353
Photon-number-splitting versus cloning attacks in practical implementations of the Bennett-Brassard1984 protocol for quantum cryptography. Physical Review A, 2005, 71, .2.531
119 Entanglement and non-locality are different resources. New Journal of Physics, 2005, 7, 88-88. 2.9 97
120 Fast and simple one-way quantum key distribution. Applied Physics Letters, 2005, 87, 194108.3.3229
121 A Fabryâ€"Perot-like two-photon interferometer for high-dimensional time-bin entanglement. Journal of Modern Optics, 2005, 52, 2637-2648.Security of two quantum cryptography protocols using the same four qubit states. Physical Review A,2005, 72,.2.598
123 Quantum cloning. Reviews of Modern Physics, 2005, 77, 1225-1256. 45.6 482Two independent photon pairs versus four-photon entangled states in parametric down conversion.

```
A relevant two qubit Bell inequality inequivalent to the CHSH inequality. Journal of Physics A, 2004,
37, 1775-1787.
127
128

Photon counting at telecom wavelengths with commercial \(\ln \mathrm{GaAs} / \ln \mathrm{P}\) avalanche photodiodes: Current performance. Journal of Modern Optics, 2004, 51, 1381-1398.
\begin{tabular}{ll}
131 & \begin{tabular}{l} 
Equivalence between Two-Qubit Entanglement and Secure Key Distribution. Physical Review Letters, \\
\(2003,91,167901\).
\end{tabular} \\
132 & \begin{tabular}{l} 
Quantum entanglement with acousto-optic modulators: Two-photon beats and Bell experiments with \\
moving beam splitters. Physical Review A, 2003, 67, .
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
Quantum Correlations with Spacelike Separated Beam Splitters in Motion: Experimental Test of \\
Multisimultaneity. Physical Review Letters, 2002, 88, 120404.
\end{tabular}
Cloning a qutrit. Journal of Modern Optics, 2002, 49, 1355-1373.
\begin{tabular}{|c|c|c|c|}
\hline 135 & Quantum correlation with moving beamsplitters in relativistic configuration. Pramana - Journal of Physics, 2002, 59, 181-188. & 1.8 & 2 \\
\hline 136 & Faint laser quantum key distribution: Eavesdropping exploiting multiphoton pulses. Journal of Modern Optics, 2001, 48, 2009-2021. & 1.3 & 47 \\
\hline 137 & Experimental entanglement distillation and â€ hiddenâ€ \({ }^{\text {™ }}\) non-locality. Nature, 2001, 409, 1014-1017. & 27.8 & 290 \\
\hline 138 & Quantum Solution to the Byzantine Agreement Problem. Physical Review Letters, 2001, 87, 217901. & 7.8 & 109 \\
\hline 139 & The speed of quantum information and the preferred frame: analysis of experimental data. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 276, 1-7. & 2.1 & 59 \\
\hline
\end{tabular}
140 Optical quantum random number generator. Journal of Modern Optics, 2000, 47, 595-598.1.3208
141 Quantum approach to coupling classical and quantum dynamics. Physical Review A, 2000, 61, . ..... 2.5 ..... 74

The Platonic solids and fundamental tests of quantum mechanics. Quantum - the Open Journal for```

