Jian Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7557799/publications.pdf

Version: 2024-02-01

516710 610901 26 578 16 24 h-index citations g-index papers 26 26 26 895 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced Efficiency and Stability of Carbonâ€Based Perovskite Solar Cells by Eva Interface Engineering. Advanced Materials Interfaces, 2022, 9, .	3.7	4
2	Smart ultra-stable foams stabilized using cellulose nanocrystal (CNC) gels <i>via</i> noncovalent bonding. Chemical Communications, 2022, 58, 4723-4726.	4.1	7
3	Promoting the hole extraction and interfacial performance with MOFs derived Co3O4@NC for efficient carbon-based perovskite solar cells. Chemical Engineering Journal, 2021, 414, 128878.	12.7	24
4	Aqueous Foam Stabilized by an in Situ Hydrophobic Polymer via Interaction with Alkyl Polyglycoside for Enhancing Oil Recovery. Energy & Samp; Fuels, 2020, 34, 1639-1652.	5.1	20
5	Application of Co-Mo bimetal/carbon composite in dye-sensitized solar cells and its research on synergy mechanism. Journal of Solid State Electrochemistry, 2020, 24, 753-759.	2.5	8
6	Enhanced performance of carbon-based perovskite solar cells with a Li+-doped SnO2 electron transport layer and Al2O3 scaffold layer. Solar Energy, 2020, 201, 523-529.	6.1	30
7	Co-Ni alloy@carbon aerogels for improving the efficiency and air stability of perovskite solar cells and its hysteresis mechanism. Carbon, 2019, 154, 322-329.	10.3	12
8	Low-temperature preparation of HTM-free SnO2-based planar heterojunction perovskite solar cells with commercial carbon as counter electrode. Journal of Alloys and Compounds, 2019, 809, 151817.	5.5	23
9	Effective improvement of the photovoltaic performance of carbon-based perovskites solar cells by grinding process and its capacitor model. Journal of Power Sources, 2019, 422, 131-137.	7.8	14
10	Novel coal-based carbon/CNTs composite counter electrode for highly efficient ZnO-based dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2018, 22, 2553-2560.	2.5	7
11	Biomass based iron and nitrogen co-doped 3D porous carbon as an efficient oxygen reduction catalyst. Journal of Colloid and Interface Science, 2018, 523, 144-150.	9.4	44
12	Graphene-Based Nanocomposites for Efficient Photocatalytic Hydrogen Evolution: Insight into the Interface toward Separation of Photogenerated Charges. ACS Applied Materials & Enterfaces, 2018, 10, 43760-43767.	8.0	42
13	Highly efficient ZnO-based dye-sensitized solar cells with low-cost Co–Ni/carbon aerogel composites as counter electrodes. New Journal of Chemistry, 2018, 42, 16329-16334.	2.8	12
14	Highly crystalline stannite-phase Cu2XSnS4 (XÂ=ÂMn, Fe, Co, Ni, Zn and Cd) nanoflower counter electrodes for ZnO-based dye-sensitised solar cells. Journal of Alloys and Compounds, 2017, 696, 938-946.	5.5	49
15	Hierarchical Hybrids Integrated by Dual Polypyrroleâ€Based Porous Carbons for Enhanced Capacitive Performance. Chemistry - A European Journal, 2017, 23, 13474-13481.	3.3	28
16	Comparative study of two methods for the synthesis of CuBi2O4 particles and their application in ZnO-based dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 13437-13444.	2.2	4
17	Effect of surface modification by coating thioacetamide on the performance of ZnO-based dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 6475-6479.	2.8	4
18	Solid-state synthesis of ZnO and ZnFe2O4 to form p–n junction composite in the use of dye sensitized solar cells. Journal of Alloys and Compounds, 2016, 676, 320-325.	5 . 5	27

#	Article	IF	CITATION
19	Cooperation of multifunction composite structures and fluorescein for photovoltaic performance-enhanced ZnO-based dye-sensitized solar cells. Journal of Power Sources, 2015, 297, 16-22.	7.8	20
20	A novel triple-layer zinc oxide/carbon nanotube architecture for dye-sensitized solar cells with excellent power conversion efficiency. Journal of Power Sources, 2015, 286, 175-181.	7.8	24
21	A composite catalyst of reduced black TiO _{2â^'x} /CNT: a highly efficient counter electrode for ZnO-based dye-sensitized solar cells. Chemical Communications, 2015, 51, 17459-17462.	4.1	32
22	High-efficiency dye-sensitized solar cells of up to 8.03% by air plasma treatment of ZnO nanostructures. Chemical Communications, 2015, 51, 16229-16232.	4.1	34
23	Photocatalytic activity and adsorption performance of p-CuBi2O4/n-TiO2 p–n heterojunction composites prepared by in situ sol–gel coating method. Journal of Sol-Gel Science and Technology, 2014, 71, 38-42.	2.4	20
24	Morphology dependence of performance of counter electrodes for dye-sensitized solar cells of hydrothermally prepared hierarchical Cu2ZnSnS4 nanostructures. RSC Advances, 2013, 3, 23264.	3.6	29
25	Sintering and dielectric properties of BaTiO3 prepared by a composite-hydroxide-mediated approach. Materials Research Bulletin, 2010, 45, 1345-1350.	5.2	10
26	Preparation of double-doped BaCeO ₃ and its application in the synthesis of ammonia at atmospheric pressure. Science and Technology of Advanced Materials, 2007, 8, 566-570.	6.1	50