Vinod K Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7557641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone. Analytica Chimica Acta, 2001, 429, 237-246.	2.6	194
2	Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix[4]arene anchored chloromethylated polystyrene solid phase. Talanta, 2006, 70, 257-266.	2.9	122
3	Application of chelate forming resin Amberlite XAD-2-o-vanillinthiosemicarbazone to the separation and preconcentration of copper(II), zinc(II) and lead(II). Talanta, 1997, 45, 397-404.	2.9	95
4	Polymer supported calix[4]arene-semicarbazone derivative for separation and preconcentration of La(III), Ce(III), Th(IV) and U(VI). Reactive and Functional Polymers, 2002, 51, 101-110.	2.0	91
5	Chemistry of calix[4]resorcinarenes. Russian Chemical Reviews, 2011, 80, 75-102.	2.5	88
6	Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 134, 73-80.	2.0	61
7	Analytical applications of thiosemicarbazones and semicarbazones. Microchemical Journal, 1988, 38, 144-169.	2.3	52
8	Turn-on fluorescence probe for selective detection of Hg(II) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample. Chinese Chemical Letters, 2016, 27, 731-737.	4.8	52
9	Calix Receptor Edifice; Scrupulous Turn Off Fluorescent Sensor for Fe(III), Co(II) and Cu(II). Journal of Fluorescence, 2012, 22, 1493-1500.	1.3	49
10	Azocalix[4]pyrrole Amberlite XAD-2: New polymeric chelating resins for the extraction, preconcentration and sequential separation of Cu(II), Zn(II) and Cd(II) in natural water samples. Talanta, 2009, 79, 1331-1340.	2.9	42
11	Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions. Applied Nanoscience (Switzerland), 2016, 6, 555-566.	1.6	42
12	Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 94-100.	2.0	41
13	Selective Extraction, Preconcentration and Transport Studies of Thorium(IV) Using Octa-Functionalized Calix[4]resorcinarene-Hydroxamic Acid. Analytical Sciences, 2005, 21, 129-135.	0.8	40
14	A comparative study: Metal nanoparticles as fluorescent sensors for biomolecules and their biomedical application. Sensors and Actuators B: Chemical, 2017, 246, 686-695.	4.0	37
15	Selective recognition by novel calix system: ICT based chemosensor for metal ions. Journal of Luminescence, 2014, 146, 450-457.	1.5	35
16	A turn-off fluorescence sensor for insensitive munition using anthraquinone-appended oxacalix[4]arene and its computational studies. New Journal of Chemistry, 2017, 41, 5125-5132.	1.4	33
17	Molecular octopus: octa functionalized calix[4]resorcinarene-hydroxamic acid [C4RAHA] for selective extraction, separation and preconcentration of U(VI). Talanta, 2005, 65, 466-475.	2.9	32

#	Article	IF	CITATIONS
19	Turn-off fluorescence probe for the selective determination of pendimethalin using a mechanistic docking model of novel oxacalix[4]arene. RSC Advances, 2016, 6, 53573-53577.	1.7	30
20	Quinoline appended oxacalixarene as turn-off fluorescent probe for the selective and sensitive determination of Cu2+ ions: A combined experimental and DFT study. Journal of Luminescence, 2017, 192, 256-262.	1.5	28
21	An oxacalix[4]arene derived dual sensing fluorescent probe for the detection of As(<scp>v</scp>) and Cr(<scp>vi</scp>) oxyanions in aqueous media. Dalton Transactions, 2020, 49, 7459-7466.	1.6	28
22	The Chemistry of Nascent Oxacalix[n]hetarene (n≥4): A Review. Current Organic Chemistry, 2015, 19, 1077-1096.	0.9	28
23	Solid-phase extractive preconcentration and separation of lanthanum(III) and cerium(III) using a polymer-supported chelating calix [4] arene resin. Journal of Analytical Chemistry, 2007, 62, 104-112.	0.4	26
24	A new colorimetric and fluorescent chemosensor based on thiacalix[4]arene for fluoride ions. Tetrahedron Letters, 2014, 55, 7094-7098.	0.7	26
25	Calix-Based Nanoparticles: A Review. Topics in Current Chemistry, 2016, 374, 28.	3.0	26
26	A resorcinarene-based "turn-off―fluorescence sensor for 4-nitrotoluene: Insights from fluorescence and 1 H NMR titration with computational approach. Journal of Luminescence, 2017, 184, 74-82.	1.5	26
27	Selective sensing of copper (II) and leucine using fluorescent turn on – off mechanism from calix[4]resorcinarene modified gold nanoparticles. Sensors and Actuators B: Chemical, 2017, 240, 278-287.	4.0	24
28	Synthesis and modeling of calix[4]pyrrole wrapped Au nanoprobe for specific detection of Pb(II): Antioxidant and radical scavenging efficiencies. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 801-810.	2.0	24
29	A supercritical fluid chromatography/tandem mass spectrometry method for the simultaneous quantification of metformin and gliclazide in human plasma. Indian Journal of Pharmaceutical Sciences, 2010, 72, 50.	1.0	23
30	A rapid and specific approach for direct measurement of pravastatin concentration in plasma by LC-MS/MS employing solid-phase extraction. Biomedical Chromatography, 2007, 21, 67-78.	0.8	21
31	Synthesis, spectral characterization of azo dyes derived from calix[4]resorcinarene and their application in dyeing of fibers. Fibers and Polymers, 2008, 9, 720-726.	1.1	21
32	Thiacalix[4]arene-tetra-(quinoline-8- sulfonate): a Sensitive and Selective Fluorescent Sensor for Co (II). Journal of Fluorescence, 2016, 26, 1729-1736.	1.3	21
33	Highly selective and sensitive fluorescent sensor: Thiacalix[4]arene-1-naphthalene carboxylate for Zn2+ ions. Journal of Molecular Structure, 2017, 1133, 1-8.	1.8	21
34	Structural motifs of oxacalix[4]arene for molecular recognition of nitroaromatic explosives: Experimental and computational investigations of host-guest complexes. Journal of Molecular Liquids, 2020, 306, 112809.	2.3	21
35	Application of a Chelate Forming Calix[4]arene-o-vanillinthiosemicarbazone Resin to the Separation, Preconcentration and Trace Determination of Cu(II), Cd(II) and Pb(II) in Natural Water Samples. Mikrochimica Acta, 2004, 147, 253.	2.5	20
36	An Efficient One Pot Synthesis of Water-Dispersible Calix[4]arene Polyhydrazide Protected Gold Nanoparticles-A "Turn Off―Fluorescent Sensor for Hg[II] Ions. Journal of Nanoscience and Nanotechnology, 2012, 12, 3781-3787.	0.9	20

#	Article	IF	CITATIONS
37	Catalytic activity of recyclable resorcinarene-protected antibacterial Pd nanoparticles in C-C coupling reactions. Chinese Journal of Catalysis, 2016, 37, 250-257.	6.9	20
38	Propyl phthalimide-modified thiacalixphenyl[4]arene as a "turn on―chemosensor for Hg(II) ions. Journal of Luminescence, 2016, 179, 378-383.	1.5	19
39	Dual <i>in vitro</i> and <i>in silico</i> analysis of thiacalix[4]arene dinaphthalene sulfonate for the sensing of 4-nitrotoluene and 2,3-dinitrotoluene. New Journal of Chemistry, 2018, 42, 2682-2691.	1.4	19
40	Sensing of Ce(<scp>iii</scp>) using di-naphthoylated oxacalix[4]arene <i>via</i> realistic simulations and experimental studies. New Journal of Chemistry, 2018, 42, 311-317.	1.4	18
41	Merrifield Resin Supported Chelate Forming Calix[4]areneâ€oâ€vanillinthiosemicarbazone Resin Employed for the Separation, Preconcentration and Trace Determination of Cr(VI), As(III) and Tl(I) in Water Samples. Separation Science and Technology, 2006, 41, 123-147.	1.3	17
42	Oxacalix[4]arene templated silver nanoparticles as dual readout sensor: Developing portable kit for rapid detection of methylmercury and its speciation. Sensors and Actuators B: Chemical, 2020, 317, 128180.	4.0	16
43	Detection of small molecular toxins using azacalix[4]arene architecture and its theoretical investigations. Journal of Molecular Liquids, 2021, 337, 116337.	2.3	16
44	Efficiently functionalized oxacalix[4]arenes: Synthesis, characterization and exploration of their biological profile as novel HDAC inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1005-1010.	1.0	14
45	Basketing nanopalladium into calix[4]pyrrole as an efficient catalyst for Mizoroki-Heck reaction. Arabian Journal of Chemistry, 2017, 10, 1125-1135.	2.3	14
46	Novel calix[4]pyrrole assembly: Punctilious recognition of Fâ^' and Cu+2 ions. Journal of Molecular Structure, 2017, 1149, 299-306.	1.8	14
47	Colorimetric and electrochemical sensing of As(III) using calix[4]pyrrole capped gold nanoparticles and evaluation of its cytotoxic activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 98, 29-41.	0.9	14
48	Recent Advancements for the Recognization of Nitroaromatic Explosives Using Calixarene Based Fluorescent Probes. Journal of Fluorescence, 2022, 32, 67-79.	1.3	14
49	A facial microwave-assisted synthesis, spectroscopic characterization and preliminary complexation studies of calix[4]pyrroles containing the hydroxamic-acid moiety. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 167-178.	1.6	13
50	Azocalix[4]pyrroles: one-pot microwave and one drop water assisted synthesis, spectroscopic characterization and preliminary investigation of its complexation with copper (II). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 63, 27-35.	1.6	13
51	Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 82, 425-436.	0.9	13
52	Selective fluorescence sensing of Cu(II) ions using calix[4]pyrrole fabricated Ag nanoparticles: A spectroscopic and computational approach. Journal of Molecular Liquids, 2018, 269, 467-475.	2.3	13
53	A highly selective anthraquinone appended oxacalixarene receptor for fluorescent ICT sensing of Fâ^' ions: an experimental and computational study. Journal of Chemical Sciences, 2020, 132, 1.	0.7	13
54	Scrupulous recognition of biologically important acids by fluorescent "turn off-on―mechanism of thaicalix reduced silver nanoparticles. Chinese Chemical Letters, 2017, 28, 312-318.	4.8	12

#	Article	IF	CITATIONS
55	Heck-type olefination and Suzuki coupling reactions using highly efficient oxacalix[4]arene wrapped nanopalladium catalyst. Journal of Saudi Chemical Society, 2018, 22, 558-568.	2.4	12
56	Octafunctionalized calix[4]resorcinarene-N-fenil-acetohydroxamic acid for the separation, preconcentration and transport studies of cerium(IV). Journal of the Brazilian Chemical Society, 2006, 17, 1316-1322.	0.6	12
57	Sequential Separation and Trace Enrichment of Thorium(IV) and Uranium(VI) on Chelating Resin Amberlite XAD-2-ortho-vanillinthiosemicarbazone (o-VTSC). Separation Science and Technology, 1998, 33, 1803-1818.	1.3	11
58	Azocalix[4]pyrrole dyes: Application in dyeing of fibers and their antimicrobial activity. Fibers and Polymers, 2010, 11, 363-371.	1.1	11
59	Thiacalix[4]arene functionalized gold nano-assembly for recognition of isoleucine in aqueous solution and its antioxidant study. Chemical Physics Letters, 2017, 667, 137-145.	1.2	11
60	Calix[4]pyrrole Stabilized PdNPs as an Efficient Heterogeneous Catalyst for Enhanced Degradation of Water-Soluble Carcinogenic Azo Dyes. Catalysis Letters, 2021, 151, 548-558.	1.4	11
61	Synthesis of Water-Dispersible Pd Nanoparticles Using a Novel Oxacalixarene Derivative and their Catalytic Application in C–C Coupling Reactions. Catalysis Letters, 2016, 146, 1581-1590.	1.4	10
62	Design of bi-pyrene functionalized oxacalixarene probe for ratiometric detection of Fe3+ and PO43- ions. Journal of Molecular Liquids, 2022, 350, 118601.	2.3	8
63	Supervanadophile: Complexation, preconcentration and transport studies of vanadium by octa functionalized calix[4]resorcinarene-hydroxamic acid. Journal of the Iranian Chemical Society, 2008, 5, 646-656.	1.2	7
64	Octa- <i>O</i> -Methoxy Resorcin [4] Arene Amberlite XAD-4 Polymeric Chelating Resin for Solid Phase Extraction, Preconcentration, Separation and Trace Determination of Ni(II), Cu(II), Zn(II) and Cd(II) Ions. American Journal of Analytical Chemistry, 2013, 04, 238-251.	0.3	7
65	Heterogeneous hydrogenation using stable and reusable calix[4]pyrrole fenced Pt nanoparticles and its mechanistic insight. Applied Surface Science, 2018, 437, 195-201.	3.1	7
66	LIQUID-LIQUID EXTRACTION, PRECONCENTRATION AND TRANSPORT STUDIES OF LANTHANUM (III) WITH CALIX [4] RESORCINARENE-HYDROXAMIC ACID (C4RAHA). Journal of the Chilean Chemical Society, 2007, 52, .	0.5	7
67	Azo resorcin[4]calixpyrrole grafted Amberlite XAD-2 polymer: an efficient solid phase extractant for separation and preconcentration of La(III) and Ce(III) from natural geological samples. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 81, 409-422.	0.9	6
68	An ionic receptor for Zn2+ metal ion using synthesised bis-formylpyrazole calix[4]arene and its computational study. Supramolecular Chemistry, 2018, 30, 589-599.	1.5	6
69	Solid Phase Extraction, Preconcentration and Sequential Separation of U(VI), Th(IV), La(III) and Ce(III) by Octa- <i>O</i> -methoxy resorcin[4]arene based Amberlite XAD-4 Chelating Resin. World Journal of Analytical Chemistry, 2014, 2, 31-41.	1.0	6
70	Development of tBu-phenyl Acetamide Appended Thiacalix[4]arene as "Turn-ON―Fluorescent Probe for Selective Recognition of Hg(II) Ions. Journal of Fluorescence, 2022, 32, 637-645.	1.3	6
71	Diazo reductive: a new approach to the synthesis of novel "upper rim―functionalized resorcin[4]arene Schiff-bases. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 111-115.	1.6	5
72	Facile Construction and In Silico Study of Quinolineâ€Attached Resorcinarene Fluorescent Sensor for the Recognition of Insensitive Munition Compounds. ChemistrySelect, 2018, 3, 12951-12959.	0.7	5

#	Article	IF	CITATIONS
73	Evaluation of thermodynamic parameters and stability constants of bivalent metal complexes of biologically active o-vanillinsemicarbazone. Thermochimica Acta, 1989, 138, 21-25.	1.2	4
74	Facile construction of calix[4]pyrrole-templated gold nanoparticles: computational insights and application for efficient reduction of 4-nitrophenol. Gold Bulletin, 2019, 52, 125-133.	1.1	4
75	Liquid-Liquid Extraction, Separation, Preconcentration and Spectrophotometric Determination of Vanadium(V) by Tetra Functionalized Calix[4]pyrrole Hydroxamic Acid. Macroheterocycles, 2009, 2, 23-29.	0.9	4
76	Pyrene functionalized oxacalix[4]arene architecture as dual readout sensor for expeditious recognition of cyanide anion. Journal of Fluorescence, 2022, 32, 1425-1433.	1.3	4
77	Oxacalix[4]arene based dual-signalling fluorimetric and electrochemical chemosensor for the selective detection of nitroaromatic compounds. Journal of Molecular Liquids, 2022, 362, 119791.	2.3	4
78	Facile construction & modeling of a highly active thiacalixphenyl[4]arene-protected nano-palladium catalyst for various C–C cross-coupling reactions. New Journal of Chemistry, 2019, 43, 5611-5622.	1.4	3
79	Synthesis of Calix[4]resorcinarene Based Dyes and its Application in Dyeing of Fibres. E-Journal of Chemistry, 2008, 5, 1037-1047.	0.4	2
80	An oxacalix[4]arene-derived dual-sensing fluorescent probe for the relay recognition of Hg ²⁺ and S ^{2â^'} ions. New Journal of Chemistry, 2021, 45, 17902-17908.	1.4	2