
## Jill M Mcmahon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7557558/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Profile of the unfolded protein response in rat cerebellar cortical development. Journal of<br>Comparative Neurology, 2019, 527, 2910-2924.                                                                                         | 1.6 | 6         |
| 2  | Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI. Journal of Neuroscience Methods, 2018, 295, 87-103.                                                       | 2.5 | 38        |
| 3  | UPR Induction Prevents Iron Accumulation and Oligodendrocyte Loss in ex vivo Cultured Hippocampal<br>Slices. Frontiers in Neuroscience, 2018, 12, 969.                                                                              | 2.8 | 2         |
| 4  | New generation of headgear for rugby: impact reduction of linear and rotational forces by a viscoelastic material-based rugby head guard. BMJ Open Sport and Exercise Medicine, 2018, 4, e000464.                                   | 2.9 | 11        |
| 5  | Seeing the wood for the trees: towards improved quantification of glial cells in central nervous system tissue. Neural Regeneration Research, 2018, 13, 1520.                                                                       | 3.0 | 7         |
| 6  | Staying in the game: a pilot study examining the efficacy of protective headgear in an animal model of mild traumatic brain injury (mTBI). Brain Injury, 2017, 31, 1521-1529.                                                       | 1.2 | 7         |
| 7  | Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities<br>& practical considerations. Progress in Neurobiology, 2017, 158, 1-14.                                                    | 5.7 | 21        |
| 8  | Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model. Scientific Reports, 2016, 6, 36410.                                                                               | 3.3 | 33        |
| 9  | The role of the unfolded protein response in myelination. Neural Regeneration Research, 2016, 11, 394.                                                                                                                              | 3.0 | 2         |
| 10 | Differential activation of ER stress pathways in myelinating cerebellar tracts. International Journal of Developmental Neuroscience, 2015, 47, 347-360.                                                                             | 1.6 | 22        |
| 11 | Mesenchymal stem cells and a vitamin D receptor agonist additively suppress T helper 17 cells and the<br>related inflammatory response in the kidney. American Journal of Physiology - Renal Physiology, 2014,<br>307, F1412-F1426. | 2.7 | 14        |
| 12 | Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathologica Communications, 2013, 1, 37.                                                                   | 5.2 | 44        |
| 13 | Liposomal surface coatings of metal stents for efficient non-viral gene delivery to the injured vasculature. Journal of Controlled Release, 2013, 167, 109-119.                                                                     | 9.9 | 14        |
| 14 | Mesenchymal Stem Cell Survival in the Infarcted Heart Is Enhanced by Lentivirus Vector-Mediated Heat<br>Shock Protein 27 Expression. Human Gene Therapy, 2013, 24, 840-851.                                                         | 2.7 | 90        |
| 15 | Increased expression of ER stress- and hypoxia-associated molecules in grey matter lesions in multiple sclerosis Journal, 2012, 18, 1437-1447.                                                                                      | 3.0 | 47        |
| 16 | Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia. Stem Cell Research and Therapy, 2011, 2, 12.                                                               | 5.5 | 89        |
| 17 | Expression profiles of endoplasmic reticulum stress-related molecules in demyelinating lesions and multiple sclerosis. Multiple Sclerosis Journal, 2011, 17, 808-818.                                                               | 3.0 | 64        |
| 18 | Gene expression analysis of the microvascular compartment in multiple sclerosis using laser microdissected blood vessels. Acta Neuropathologica, 2010, 119, 601-615.                                                                | 7.7 | 28        |

JILL M MCMAHON

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Bolus Delivery of Mesenchymal Stem Cells to Injured Vasculature in the Rabbit Carotid Artery<br>Produces a Dysfunctional Endothelium. Tissue Engineering - Part A, 2010, 16, 1657-1665.             | 3.1  | 5         |
| 20 | Generation of Antioxidant Adenovirus Gene Transfer Vectors Encoding CuZnSOD, MnSOD, and<br>Catalase. Methods in Molecular Biology, 2010, 594, 381-393.                                              | 0.9  | 6         |
| 21 | Comparison of Viral and Nonviral Vectors for Gene Transfer to Human Endothelial Progenitor Cells.<br>Tissue Engineering - Part C: Methods, 2009, 15, 223-231.                                       | 2.1  | 25        |
| 22 | The effects of blood–brain barrier disruption on glial cell function in multiple sclerosis.<br>Biochemical Society Transactions, 2009, 37, 329-331.                                                 | 3.4  | 52        |
| 23 | Gene delivery to the vasculature mediated by lowâ€ŧitre adenoâ€associated virus serotypes 1 and 5.<br>Journal of Gene Medicine, 2008, 10, 143-151.                                                  | 2.8  | 22        |
| 24 | A non-apoptotic role for caspase-9 in muscle differentiation. Journal of Cell Science, 2008, 121, 3786-3793.                                                                                        | 2.0  | 142       |
| 25 | Gene-eluting Stents: Adenovirus-mediated Delivery of eNOS to the Blood Vessel Wall Accelerates<br>Re-endothelialization and Inhibits Restenosis. Molecular Therapy, 2008, 16, 1674-1680.            | 8.2  | 78        |
| 26 | Increased Expression of Endoplasmic Reticulum Stress-Related Signaling Pathway Molecules in<br>Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2008, 67, 200-211. | 1.7  | 99        |
| 27 | Gene Delivery to Dystrophic Muscle. Methods in Molecular Biology, 2008, 423, 421-431.                                                                                                               | 0.9  | 7         |
| 28 | The effect of cholecyst-derived extracellular matrix on the phenotypic behaviour of valvular endothelial and valvular interstitial cells. Biomaterials, 2007, 28, 1461-1469.                        | 11.4 | 16        |
| 29 | Identification of an inhibitor of caspase activation from heart extracts; ATP blocks apoptosome formation. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 465-474.         | 4.9  | 14        |
| 30 | Gene Transfer into Rat Mesenchymal Stem Cells: A Comparative Study of Viral and Nonviral Vectors.<br>Stem Cells and Development, 2006, 15, 87-96.                                                   | 2.1  | 142       |
| 31 | Gene-Eluting Stents: Comparison of Adenoviral and Adeno- Associated Viral Gene Delivery to the<br>Blood Vessel Wall In Vivo. Human Gene Therapy, 2006, 17, 741-750.                                 | 2.7  | 48        |
| 32 | Electroporation for Gene Transfer to Skeletal Muscles. BioDrugs, 2004, 18, 155-165.                                                                                                                 | 4.6  | 81        |
| 33 | High-efficiency plasmid gene transfer into dystrophic muscle. Gene Therapy, 2003, 10, 504-512.                                                                                                      | 4.5  | 76        |
| 34 | Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase –<br>increased expression with reduced muscle damage. Gene Therapy, 2001, 8, 1264-1270.          | 4.5  | 235       |
| 35 | Evaluation of Plasmid DNA for in Vivo Gene Therapy: Factors Affecting the Number of Transfected<br>Fibers. Journal of Pharmaceutical Sciences, 1998, 87, 763-768.                                   | 3.3  | 23        |
| 36 | Inflammatory responses following direct injection of plasmid DNA into skeletal muscle. Gene Therapy,<br>1998, 5, 1283-1290.                                                                         | 4.5  | 101       |

JILL M MCMAHON

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Immune responses, not promoter inactivation, are responsible for decreased longâ€ŧerm expression<br>following plasmid gene transfer into skeletal muscle. FEBS Letters, 1997, 407, 164-168.                                                 | 2.8 | 47        |
| 38 | The Significance of Measles Virus Antigen and Genome Distribution in the CNS in SSPE for Mechanisms of Viral Spread and Demyelination. Journal of Neuropathology and Experimental Neurology, 1996, 55, 471-480.                             | 1.7 | 100       |
| 39 | The use of microwave irradiation as a pretreatment toin situ hybridization for the detection of<br>measles virus and chicken anaemia virus in formalin-fixed paraffin-embedded tissue. The Histochemical<br>Journal, 1996, 28, 157-164.     | 0.6 | 24        |
| 40 | Microwave antigen retrieval for immunocytochemistry on formalin-fixed, paraffin-embedded post-mortem CNS tissue. Journal of Pathology, 1995, 176, 207-216.                                                                                  | 4.5 | 48        |
| 41 | A Comparison of Digoxigenin and Biotin Labelled DNA and RNA Probes for in Situ Hybridization.<br>Biotechnic and Histochemistry, 1995, 70, 147-154.                                                                                          | 1.3 | 18        |
| 42 | Association of measles virus with neurofibrillary tangles in subacute sclerosing panencephalitis: a combined <i>in situ</i> hybridization and immunocytochemical investigation. Neuropathology and Applied Neurobiology, 1994, 20, 103-110. | 3.2 | 50        |