
Mosayeb Naseri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7557119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hexatetra-Carbon: A Novel Two-Dimensional Semiconductor Allotrope of Carbon. Computation, 2022, 10, 19.	2.0	5
2	Prediction of a Beryllium Phosphide Iodide Monolayer as a Photocatalyst for Water Splitting by Density Functional Theory. Journal of Electronic Materials, 2022, 51, 2077-2082.	2.2	0
3	XSnS ₃ (X = Ga, In) monolayer semiconductors as photo-catalysts for water splitting: a first principles study. Journal of Materials Chemistry C, 2022, 10, 11412-11423.	5.5	6
4	Prediction of a new 2D B2CO monolayer from density functional theory. Computational Materials Science, 2021, 186, 109975.	3.0	4
5	First principles analysis of the half-metallic ferromagnetism, elastic and thermodynamic properties of equiatomic quaternary Heusler compound CoCrRhSi. Materials Chemistry and Physics, 2021, 257, 123695.	4.0	8
6	Strain-tunable electronic, optical and thermoelectric properties of BP monolayer investigated by FP-LAPW calculations. Physica B: Condensed Matter, 2021, 603, 412757.	2.7	9
7	Strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study. Indian Journal of Physics, 2021, 95, 2365-2373.	1.8	39
8	Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer: A first-principles calculation. Journal of Applied Physics, 2021, 129, .	2.5	48
9	A computational prediction of a novel quasi hexagonal Al2SSi semiconductor monolayer. Chemical Physics, 2021, 545, 111148.	1.9	Ο
10	Structural, electronic and optical properties of GeX (X = N, P and As) monolayer: under stress and strain conditions. Optical and Quantum Electronics, 2021, 53, 1.	3.3	8
11	A novel two-dimensional boron–carbon–nitride (BCN) monolayer: A first-principles insight. Journal of Applied Physics, 2021, 130, .	2.5	23
12	Two-dimensional buckled tetragonal cadmium chalcogenides including CdS, CdSe, and CdTe monolayers as photo-catalysts for water splitting. Physical Chemistry Chemical Physics, 2021, 23, 12226-12232.	2.8	35
13	Quantum teleportation of a N-qubit entangled state by using a (\$\$N+1\$\$)-qubit cluster state. Quantum Information Processing, 2021, 20, 1.	2.2	6
14	Electronic and thermoelectric properties of RbYSn half-Heusler compound with 8 valence electrons: Spin-orbit coupling effect. Chemical Physics, 2020, 528, 110510.	1.9	20
15	Transition from indirect to direct band gap in SiC monolayer by chemical functionalization: A first principles study. Superlattices and Microstructures, 2020, 137, 106320.	3.1	28
16	Reducing the electronic band gap of BN monolayer by coexistence of P(As)-doping and external electric field. Superlattices and Microstructures, 2020, 137, 106357.	3.1	20
17	Examining the uniform strain effect on elastic, electronic and optical properties of CsPbCl3 through FP-LAPW calculations. Chemical Physics, 2020, 531, 110654.	1.9	8
18	Theoretical prediction of 2D XI2 (X=Si, Ge, Sn, Pb) monolayers by density functional theory. Journal of Molecular Graphics and Modelling, 2020, 95, 107501.	2.4	19

#	Article	IF	CITATIONS
19	On the structural, electronic, optical and thermoelectric properties of CdIn2Se4 ordered-vacancy compound. Journal of Solid State Chemistry, 2020, 282, 121078.	2.9	2
20	Structural and electronic properties of chemically functionalized SnC monolayer: a first principles study. Materials Research Express, 2020, 7, 015013.	1.6	16
21	Examining the half-metallicity and thermoelectric properties of new equiatomic quaternary Heusler compound CoVRhGe under pressure. Physica B: Condensed Matter, 2020, 583, 412058.	2.7	23
22	Structural, electronic and optical properties of pristine and functionalized MgO monolayers: a first principles study. RSC Advances, 2020, 10, 40411-40420.	3.6	22
23	Electronic, optical and thermoelectric properties of CaO mono- and bi-layers: Theoretical comparative investigation. Optik, 2020, 218, 165115.	2.9	3
24	Strain tunable electronic and optical properties of 2D orthorhombic lithium sulfur monolayer. Chemical Physics, 2020, 535, 110762.	1.9	1
25	Electronic structure, optical and thermoelectric properties of cadmium chalcogenides monolayers. Optik, 2020, 210, 164567.	2.9	15
26	P-substitution effects on the electronic structure and thermal properties of the half-metallic half-Heusler NaCrBi compound. Chemical Physics, 2020, 537, 110848.	1.9	8
27	Mn2CoX (X = P and As) full-Heusler compounds for spintronic applications: Half-metallicity and elastic properties. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126589.	2.1	28
28	LiCl monolayer for UV detection: First principles prediction. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 123, 114168.	2.7	7
29	First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate. Physical Chemistry Chemical Physics, 2020, 22, 15354-15364.	2.8	74
30	Computational prediction of the spin-polarized semiconductor equiatomic quaternary Heusler compound MnVZrP as a spin-filter. RSC Advances, 2020, 10, 25609-25617.	3.6	4
31	Structural, electronic and optical properties of CdO monolayer and bilayers: Stacking effect investigations. Superlattices and Microstructures, 2020, 145, 106644.	3.1	14
32	New equiatomic quaternary Heusler compounds without transition metals KCaBX (XÂ= S and Se): Robust half-metallicity and optical properties. Journal of Molecular Graphics and Modelling, 2020, 100, 107642.	2.4	9
33	First principles insight into the structural, electronic, optical and thermodynamic properties of CsPb2Br5 compound. Chemical Physics, 2020, 533, 110704.	1.9	7
34	An assessment of the structural, electronic, optical and thermoelectric properties of the BaAg2GeS4 compound. Journal of Solid State Chemistry, 2020, 285, 121260.	2.9	8
35	2D Hexagonal SnTe monolayer: a quasi direct band gap semiconductor with strain sensitive electronic and optical properties. European Physical Journal B, 2020, 93, 1.	1.5	12
36	Functionalizing AlN monolayer with hydroxyl group: Effect on the structural and electronic properties. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126444.	2.1	13

#	Article	IF	CITATIONS
37	A comprehensive investigation on electronic structure, optical and thermoelectric properties of the HfSSe Janus monolayer. Journal of Physics and Chemistry of Solids, 2020, 144, 109490.	4.0	36
38	Buckling strain effects on electronic and optical aspects of penta-graphene nanostructure. Superlattices and Microstructures, 2019, 133, 106217.	3.1	14
39	Biaxial strain and external electric field effects on the electronic structure of hydrogenated GaN monolayer. Superlattices and Microstructures, 2019, 136, 106270.	3.1	13
40	Quantum Selective Encryption for Medical Images. International Journal of Theoretical Physics, 2019, 58, 3908-3926.	1.2	19
41	Computational investigation of the structural, electronic, optical and thermoelectric properties of T2-Al2MgC2 compound. Journal of Solid State Chemistry, 2019, 280, 120999.	2.9	6
42	A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks. Quantum Information Processing, 2019, 18, 1.	2.2	7
43	First principles investigation on elastic, optoelectronic and thermoelectric properties of KYX (XÂ= Ge,) Tj ETQq1 1	0,784314 2.4	· rgBT /Overl
44	Prediction of 2D Li2X (X=Se, Te) monolayer semiconductors by first principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125992.	2.1	16
45	Prediction of novel SiX2(X = S, Se) monolayer semiconductors by density functional theory. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113581.	2.7	25
46	Penta-BeP2 monolayer: A new 2D beryllium phosphate with a narrow band gap. Chemical Physics Letters, 2019, 728, 136-141.	2.6	15
47	A new stable BeP2C monolayer with visible light sensitivity: A first principles study. Chemical Physics Letters, 2019, 728, 14-18.	2.6	2
48	First principles prediction of XI (X=Be, Mg) monolayer semiconductors: Modified Becke-Johnson approach. Optik, 2019, 186, 332-338.	2.9	0
49	A new general model for quantum image histogram (QIH). Quantum Information Processing, 2019, 18, 1.	2.2	16
50	2D Li2S monolayer: A global minimum lithium sulfide sandwich. Chemical Physics Letters, 2019, 722, 58-63.	2.6	12
51	A first-principles study of the electronic and optical properties of monolayer α-PbO. Chemical Physics Letters, 2019, 721, 27-32.	2.6	10
52	Pressure effects on the optical and electronic aspects of T-Carbon: A first principles calculation. Optik, 2019, 180, 125-133.	2.9	22
53	SiP2S monolayer: A two dimensional semiconductor with a moderate band gap. Chemical Physics Letters, 2019, 715, 100-104.	2.6	5
54	Design of a high bitrate optical decoder based on photonic crystals. Journal of Computational Electronics, 2018, 17, 830-836.	2.5	52

#	Article	IF	CITATIONS
55	Effect of Si and Ge Surface Doping on the Be2C Monolayer: Case Study on Electrical and Optical Properties. Silicon, 2018, 10, 1893-1902.	3.3	3
56	A New Quantum Gray-Scale Image Encoding Scheme. Communications in Theoretical Physics, 2018, 69, 215.	2.5	16
57	Penta-SiC 5 monolayer: A novel quasi-planar indirect semiconductor with a tunable wide band gap. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 710-715.	2.1	46
58	Theoretical Prediction of an Antimony-Silicon Monolayer \$\$(hbox {penta-Sb}_{2}hbox) Tj ETQq0 0 0 rgBT /Over 2290-2297.	lock 10 Tf 2.2	50 627 Td ({ 31
59	Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction. Frontiers of Physics, 2018, 13, 1.	5.0	60
60	Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states. Frontiers of Physics, 2018, 13, 1.	5.0	56
61	Tuning the electronic and optical properties of XP(X = Al,Ga) monolayer semiconductors using biaxial strain effect: Modified Becke-Johnson calculations. Chemical Physics Letters, 2018, 691, 181-189.	2.6	18
62	A new stable polycrystalline Be2C monolayer: A direct semiconductor with hexa-coordinate carbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2144-2148.	2.1	26
63	Investigation on the stability and electronic properties of Penta-XP5 (X = Al, Ga, In) monolayer semiconductors by using first principles calculations. Chemical Physics Letters, 2018, 706, 99-106.	2.6	20
64	A new cryptography algorithm for quantum images. Optik, 2018, 171, 947-959.	2.9	20
65	Density functional theory based prediction of a new two-dimensional TeSe2 semiconductor: A case study on the electronic properties. Chemical Physics Letters, 2018, 707, 160-164.	2.6	12
66	Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition. European Physical Journal B, 2017, 90, 1.	1.5	10
67	All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals. Superlattices and Microstructures, 2017, 109, 437-441.	3.1	74
68	A novel quantum binary images thinning algorithm: A quantum version of the Hilditch's algorithm. Optik, 2017, 131, 678-686.	2.9	23
69	Electronic and optical properties of pentagonal-B ₂ C monolayer: A first-principles calculation. International Journal of Modern Physics B, 2017, 31, 1750044.	2.0	32
70	Arsenic carbide monolayer: First principles prediction. Applied Surface Science, 2017, 423, 566-570.	6.1	45
71	A New Quantum Watermarking Based on Quantum Wavelet Transforms. Communications in Theoretical Physics, 2017, 67, 732.	2.5	48
72	A new secure quantum watermarking scheme. Optik, 2017, 139, 77-86.	2.9	80

#	Article	IF	CITATIONS
73	Electronic and optical properties of paratellurite TeO2 under pressure: A first-principles calculation. Optik, 2017, 139, 9-15.	2.9	24
74	Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities. Physical Review A, 2017, 95, .	2.5	43
75	Magnesium carbide monolayer: A novel quasi-planar semiconductor. Superlattices and Microstructures, 2017, 102, 134-140.	3.1	18
76	High-Efficient Arbitrated Quantum Signature Scheme Based on Cluster States. International Journal of Theoretical Physics, 2017, 56, 609-616.	1.2	19
77	Electronic and optical investigations of Be 2 C monolayer: Under stress and strain conditions. Materials Research Bulletin, 2017, 88, 49-55.	5.2	40
78	First-principles prediction of a novel cadmium disulfide monolayer (penta-CdS2): Indirect to direct bard gap transition by strain engineering. Chemical Physics Letters, 2017, 685, 310-315.	2.6	45
79	Quantum red–green–blue image steganography. International Journal of Quantum Information, 2017, 15, 1750039.	1.1	35
80	Red-Green-Blue multi-channel quantum representation of digital images. Optik, 2017, 128, 121-132.	2.9	90
81	Tuning of the electronic and optical properties of single-layer indium nitride by strain and stress. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83, 372-377.	2.7	28
82	A Novel LSB Based Quantum Watermarking. International Journal of Theoretical Physics, 2016, 55, 4205-4218.	1.2	71
83	An efficient double junction CIGS solar cell using a 4H-SiC nano layer. Optik, 2016, 127, 8646-8653.	2.9	7
84	An Anonymous Surveying Protocol via Greenberger-Horne-Zeilinger States. International Journal of Theoretical Physics, 2016, 55, 4436-4444.	1.2	5
85	Revisiting Quantum Authentication Scheme Based on Entanglement Swapping. International Journal of Theoretical Physics, 2016, 55, 2428-2435.	1.2	16
86	Micromorphology characterization of copper thin films by AFM and fractal analysis. Journal of Materials Science: Materials in Electronics, 2015, 26, 9630-9639.	2.2	81
87	A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation. Quantum Information Processing, 2015, 14, 4279-4295.	2.2	61
88	Elastic and optical properties of zinc-blende CrSb and its effective mass. Rare Metals, 2014, 33, 615-621.	7.1	12
89	Second Comment on: â€~ã€~Characterization of Micro-roughness Parameters in Titanium Nitride Thin Films Grown by DC Magnetron Sputtering'' [J Fusion Energ DOI 10.1007/s10894-012-9534-4]. Journal of Fusior Energy, 2012, 31, 593-594.	ו 1.2	1
90	Quantum Watermarking Using Entanglement Swapping. International Journal of Theoretical Physics, 2012, 51, 2094-2100.	1.2	26

#	Article	IF	CITATIONS
91	Thickness dependence of the structural and electrical properties of ZnO thermal-evaporated thin films. Pramana - Journal of Physics, 2011, 77, 1171-1178.	1.8	31
92	PROBABILISTIC BIDIRECTIONAL QUANTUM SECURE COMMUNICATION BASED ON A SHARED PARTIALLY ENTANGLED STATES. International Journal of Quantum Information, 2011, 09, 357-365.	1.1	8
93	Comment on: "secure direct communication based on ping-pong protocol―[Quantum Inf. Process. 8, 347 (2009)]. Quantum Information Processing, 2010, 9, 693-698.	2.2	13
94	Eavesdropping on secure quantum telephone protocol with dishonest server. Optics Communications, 2009, 282, 3375-3378.	2.1	11
95	Improved secure quantum sealed-bid auction. Optics Communications, 2009, 282, 4167-4170.	2.1	61