
Fabrizio Mancin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7557033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial metallonucleases. Chemical Communications, 2005, , 2540.	2.2	384
2	Exploiting the Self-Assembly Strategy for the Design of Selective Cull Ion Chemosensors. Angewandte Chemie - International Edition, 1999, 38, 3061-3064.	7.2	183
3	Zinc(ii) complexes as hydrolytic catalysts of phosphate diester cleavage: from model substrates to nucleic acids. New Journal of Chemistry, 2007, 31, 800.	1.4	183
4	Progress in artificial metallonucleases. Chemical Communications, 2012, 48, 5545.	2.2	163
5	Phosphate Diester and DNA Hydrolysis by a Multivalent, Nanoparticle-Based Catalyst. Journal of the American Chemical Society, 2008, 130, 15744-15745.	6.6	147
6	Aluminium fluorescence detection with a FRET amplified chemosensorElectronic supplementary information (ESI) available: experimental details and spectra. See http://www.rsc.org/suppdata/cc/b3/b303195k/. Chemical Communications, 2003, , 1606.	2.2	141
7	Amphiphilic metalloaggregates: Catalysis, transport, and sensing. Coordination Chemistry Reviews, 2009, 253, 2150-2165.	9.5	131
8	Self-Assembled Fluorescent Chemosensors. Chemistry - A European Journal, 2006, 12, 1844-1854.	1.7	128
9	A fluorescence nanosensor for Cu2+ on silica particlesElectronic supplementary information (ESI) available: experimental procedure; TEM images; NMR, UV-vis and fluorescence spectra; fluoresence titration. See http://www.rsc.org/suppdata/cc/b3/b310582b/. Chemical Communications, 2003, , 3026.	2.2	113
10	Surface modification of silica nanoparticles: a new strategy for the realization of self-organized fluorescence chemosensors. Journal of Materials Chemistry, 2005, 15, 2687.	6.7	113
11	Toward Efficient Zn(II)-Based Artificial Nucleases. Journal of the American Chemical Society, 2004, 126, 4543-4549.	6.6	112
12	Efficient Plasmid DNA Cleavage by a Mononuclear Copper(II) Complex. Inorganic Chemistry, 2005, 44, 2310-2317.	1.9	110
13	Silica Nanoparticles for Fluorescence Sensing of ZnII: Exploring the Covalent Strategy. Chemistry - A European Journal, 2007, 13, 2238-2245.	1.7	101
14	Efficient Phosphodiester Cleaving Nanozymes Resulting from Multivalency and Local Medium Polarity Control. Journal of the American Chemical Society, 2014, 136, 1158-1161.	6.6	101
15	N-Methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester. Chemical Communications, 2000, , 2253-2254.	2.2	95
16	The Ligand Effect on the Hydrolytic Reactivity of Zn(II) Complexes toward Phosphate Diesters. Inorganic Chemistry, 2003, 42, 3943-3949.	1.9	92
17	Mimicking Enzymes: Cooperation between Organic Functional Groups and Metal Ions in the Cleavage of Phosphate Diesters. Chemistry - A European Journal, 2007, 13, 2246-2256.	1.7	91
18	Metallomicelles Made of Ni(II) and Zn(II) Complexes of 2-Pyridinealdoxime-Based Ligands as Catalyst of the Cleavage of Carboxylic Acid Estersâ€. Langmuir, 2000, 16, 227-233.	1.6	87

#	Article	IF	CITATIONS
19	C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes. ACS Nano, 2018, 12, 5834-5847.	7.3	86
20	Sensing with fluorescent nanoparticles. Nanoscale, 2011, 3, 121-133.	2.8	85
21	Self-Organized Fluorescent Nanosensors for Ratiometric Pb2+ Detection. Langmuir, 2007, 23, 8632-8636.	1.6	82
22	Fluorescence Sensing of Ionic Analytes in Water: From Transition Metal Ions to Vitamin B13. Chemistry - A European Journal, 2002, 8, 94-101.	1.7	80
23	Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Frontiers in Immunology, 2020, 11, 567365.	2.2	80
24	Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition. CheM, 2017, 3, 92-109.	5.8	74
25	Size Effect on the Fluorescence Properties of Dansyl-Doped Silica Nanoparticles. Langmuir, 2006, 22, 5877-5881.	1.6	72
26	Self-Assembling in Surfactant Aggregates:Â An Alternative Way to the Realization of Fluorescence Chemosensors for Cu(II) Ions. Langmuir, 2001, 17, 7521-7528.	1.6	66
27	Phosphate diesters cleavage mediated by Ce(iv) complexes self-assembled on gold nanoparticles. Organic and Biomolecular Chemistry, 2010, 8, 2622.	1.5	59
28	Multiple functional group cooperation in phosphate diester cleavage promoted by Zn(ii) complexes. Chemical Communications, 2004, , 2862.	2.2	58
29	Turning Fluorescent Dyes into Cu(II) Nanosensors. Langmuir, 2005, 21, 9314-9321.	1.6	58
30	Amplified Fluorescence Response of Chemosensors Grafted onto Silica Nanoparticles. Langmuir, 2008, 24, 8387-8392.	1.6	58
31	Hydrolytic Metallo-Nanozymes: From Micelles and Vesicles to Gold Nanoparticles. Molecules, 2016, 21, 1014.	1.7	56
32	Nanoparticle-Assisted NMR Detection of Organic Anions: From Chemosensing to Chromatography. Journal of the American Chemical Society, 2015, 137, 886-892.	6.6	55
33	A new selective fluorescence chemosensor for Cu(II) in water. Tetrahedron Letters, 2001, 42, 9143-9146.	0.7	54
34	Controlling Diaza-Cope Rearrangement Reactions with Resonance-Assisted Hydrogen Bonds. Journal of the American Chemical Society, 2003, 125, 15276-15277.	6.6	53
35	Highly PEGylated silica nanoparticles: "ready to use―stealth functional nanocarriers. Journal of Materials Chemistry, 2010, 20, 2780.	6.7	53
36	"NMR Chemosensing―Using Monolayer-Protected Nanoparticles as Receptors. Journal of the American Chemical Society, 2013, 135, 11768-11771.	6.6	53

#	Article	IF	CITATIONS
37	Multivalent, Saccharideâ€Functionalized Gold Nanoparticles as Fully Synthetic Analogs of Type A <i>Neisseria meningitidis</i> Antigens. Advanced Materials, 2008, 20, 4348-4352.	11.1	52
38	The cellular uptake of meta-tetra(hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins. Nanotechnology, 2009, 20, 345101.	1.3	49
39	Procoagulant properties of bare and highly PEGylated vinyl-modified silica nanoparticles. Nanomedicine, 2010, 5, 881-896.	1.7	49
40	The functional dissection of the plasma corona of SiO ₂ -NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages. Nanoscale, 2015, 7, 17710-17728.	2.8	49
41	Factors affecting T cell responses induced by fully synthetic glyco-gold-nanoparticles. Nanoscale, 2013, 5, 390-400.	2.8	48
42	Metallomicelles Made of Ni(II) Complexes of Lipophilic 2-Pyridineketoximes as Powerful Catalysts of the Cleavage of Carboxylic Acid Esters. Langmuir, 1999, 15, 405-412.	1.6	46
43	Lanthanide-Based NMR: A Tool To Investigate Component Distribution in Mixed-Monolayer-Protected Nanoparticles. Journal of the American Chemical Society, 2012, 134, 7200-7203.	6.6	44
44	Surfactant-free synthesis of mesoporous and hollow silica nanoparticles with an inorganic template. Chemical Communications, 2009, , 7584.	2.2	42
45	Water-Soluble Peptide-Coated Nanoparticles: Control of the Helix Structure and Enhanced Differential Binding to Immune Cells. Journal of the American Chemical Society, 2011, 133, 8-11.	6.6	42
46	Miniemulsions as chemical nanoreactors for the room temperature synthesis of inorganic crystalline nanostructures: ZnO colloids. Journal of Materials Chemistry, 2012, 22, 1620-1626.	6.7	40
47	Insights on Nuclease Mechanism: The Role of Proximal Ammonium Group on Phosphate Esters Cleavage. Journal of the American Chemical Society, 2009, 131, 11278-11279.	6.6	39
48	The toxicity outcome of silica nanoparticles (Ludox®) is influenced by testing techniques and treatment modalities. Analytical and Bioanalytical Chemistry, 2012, 404, 1789-1802.	1.9	38
49	Seeing through Macromolecules: <i>T</i> ₂ -Filtered NMR for the Purity Assay of Functionalized Nanosystems and the Screening of Biofluids. Journal of the American Chemical Society, 2009, 131, 14222-14224.	6.6	36
50	Hydrolytic Nanozymes. European Journal of Organic Chemistry, 2020, 2020, 5044-5055.	1.2	36
51	Photoswitchable NIRâ€Emitting Gold Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 11064-11068.	7.2	35
52	Flavin Bioorthogonal Photocatalysis Toward Platinum Substrates. ACS Catalysis, 2020, 10, 187-196.	5.5	34
53	Detection and identification of designer drugs by nanoparticle-based NMR chemosensing. Chemical Science, 2018, 9, 4777-4784.	3.7	32
54	Cell penetrating silica nanoparticles doped with two-photon absorbing fluorophores. Tetrahedron, 2006, 62, 10434-10440.	1.0	31

#	Article	IF	CITATIONS
55	Molecularâ€Dynamicsâ€&imulationâ€Directed Rational Design of Nanoreceptors with Targeted Affinity. Angewandte Chemie - International Edition, 2019, 58, 7702-7707.	7.2	31
56	Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems. Nanoscale, 2013, 5, 6106.	2.8	30
57	Turning Supramolecular Receptors into Chemosensors by Nanoparticle-Assisted "NMR Chemosensingâ€. Journal of the American Chemical Society, 2015, 137, 11399-11406.	6.6	30
58	An Artificial Guanine that Binds Cytidine through the Cooperative Interaction of Metal Coordination and Hydrogen Bonding. Journal of the American Chemical Society, 2002, 124, 10946-10947.	6.6	29
59	Template assisted self-organized chemosensors. Inorganica Chimica Acta, 2007, 360, 721-727.	1.2	28
60	Noncovalent Interaction between Single-Walled Carbon Nanotubes and Pyrene-Functionalized Gold Nanoparticles in Water-Soluble Nanohybrids. Journal of Physical Chemistry C, 2014, 118, 27028-27038.	1.5	27
61	Proinflammatory effects of bare and PEGylated ORMOSIL-, PLGA- and SUV-NPs on monocytes and PMNs and their modulation by f-MLP. Nanomedicine, 2011, 6, 1027-1046.	1.7	26
62	Self-Assembled Biocompatible Fluorescent Nanoparticles for Bioimaging. Frontiers in Chemistry, 2019, 7, 168.	1.8	26
63	Reversible Chirality Control in Peptide-Functionalized Gold Nanoparticles. ACS Nano, 2013, 7, 9933-9939.	7.3	25
64	Binding and Uptake into Human Hepatocellular Carcinoma Cells of Peptide-Functionalized Gold Nanoparticles. Bioconjugate Chemistry, 2017, 28, 222-229.	1.8	25
65	A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angewandte Chemie - International Edition, 2021, 60, 1423-1432.	7.2	25
66	Catalysis on gold-nanoparticle-passivating monolayers. Current Opinion in Colloid and Interface Science, 2013, 18, 61-69.	3.4	24
67	Dinuclear Metal Complexes Based onall-cis-2,4,6-Triaminocyclohexane-1,3,5-triol as Catalysts for Cleavage of Phosphate Esters. European Journal of Organic Chemistry, 2004, 2004, 281-288.	1.2	23
68	Variations of the corona HDL:albumin ratio determine distinct effects of amorphous SiO ₂ nanoparticles on monocytes and macrophages in serum. Nanomedicine, 2014, 9, 2481-2497.	1.7	23
69	Poly(lipoic acid)-Based Nanoparticles as Self-Organized, Biocompatible, and Corona-Free Nanovectors. Biomacromolecules, 2021, 22, 467-480.	2.6	22
70	Ester Cleavage Catalysis in Reversed Micelles by Cu(II) Complexes of Hydroxy-Functionalized Ligands. Langmuir, 2000, 16, 10115-10122.	1.6	21
71	Nanoparticle-Assisted NMR Spectroscopy: Enhanced Detection of Analytes by Water-Mediated Saturation Transfer. Journal of the American Chemical Society, 2019, 141, 4870-4877.	6.6	21
72	Chiral lipophilic ligands. 5. Enantioselective ester cleavage of α-amino esters by Cu(II) complexes of chiral diamino alcohols in aqueous sufactants solutions. Tetrahedron, 1997, 53, 357-368.	1.0	20

#	Article	IF	CITATIONS
73	An artificial ionophore based on a polyhydroxylated steroid dimer. Chemical Communications, 2002, , 3066-3067.	2.2	20
74	Phosphate diesters and DNA hydrolysis by dinuclear Zn(II) complexes featuring a disulfide bridge and H-bond donors. Tetrahedron, 2010, 66, 2189-2195.	1.0	20
75	A Cell-Penetrating Ratiometric Nanoprobe for Intracellular Chloride. Organic Letters, 2012, 14, 2984-2987.	2.4	20
76	On the Metal-Aided Catalytic Mechanism for Phosphodiester Bond Cleavage Performed by Nanozymes. ACS Catalysis, 2021, 11, 8736-8748.	5.5	20
77	Multivalent Cooperative Catalysts. Current Organic Chemistry, 2009, 13, 1050-1064.	0.9	20
78	Host–Guest Allosteric Control of an Artificial Phosphatase. Journal of the American Chemical Society, 2020, 142, 6837-6841.	6.6	19
79	Catastrophic inflammatory death of monocytes and macrophages by overtaking of a critical dose of endocytosed synthetic amorphous silica nanoparticles/serum protein complexes. Nanomedicine, 2013, 8, 1101-1126.	1.7	18
80	Nanoparticleâ€Assisted Affinity NMR Spectroscopy: High Sensitivity Detection and Identification of Organic Molecules. Chemistry - A European Journal, 2016, 22, 16957-16963.	1.7	18
81	Mapping the nanoparticle-coating monolayer with NMR pseudocontact shifts. Chemical Communications, 2012, 48, 1523-1525.	2.2	17
82	Conformational Mobility in Monolayer-Protected Nanoparticles: From Torsional Free Energy Profiles to NMR Relaxation. Journal of Physical Chemistry C, 2015, 119, 20100-20110.	1.5	17
83	PEGylation of ORMOSIL nanoparticles differently modulates the in vitro toxicity toward human lung cells. Archives of Toxicology, 2015, 89, 607-620.	1.9	17
84	Chromatographic NMR Spectroscopy with Hollow Silica Spheres. Angewandte Chemie - International Edition, 2016, 55, 2733-2737.	7.2	17
85	Hydrolytic cleavage of nerve agent simulants by gold nanozymes. Journal of Hazardous Materials, 2021, 415, 125644.	6.5	16
86	Factors Influencing the Activity of Nanozymes in the Cleavage of an RNA Model Substrate. Molecules, 2019, 24, 2814.	1.7	14
87	Nanoparticle-assisted NMR spectroscopy: A chemosensing perspective. Progress in Nuclear Magnetic Resonance Spectroscopy, 2020, 117, 70-88.	3.9	14
88	DNA Phosphodiester Bond Hydrolysis Mediated by Cu(II) and Zn(II) Complexes of 1,3,5,-Triamino-cyclohexane Derivatives. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1265-1271.	0.4	13
89	Toward supramolecular nanozymes for the photocatalytic activation of Pt(<scp>iv</scp>) anticancer prodrugs. Chemical Communications, 2020, 56, 10461-10464.	2.2	13
90	Hybrid porous resist with sensing functionality. Microelectronic Engineering, 2011, 88, 1913-1916.	1.1	12

#	Article	IF	CITATIONS
91	An experimental and theoretical study of the mechanism of cleavage of an RNA-model phosphate diester by mononuclear Zn(II) complexes. Supramolecular Chemistry, 2013, 25, 665-671.	1.5	12
92	Altered Gene Transcription in Human Cells Treated with LudoxÂ $^{\odot}$ Silica Nanoparticles. International Journal of Environmental Research and Public Health, 2014, 11, 8867-8890.	1.2	12
93	Selective switching of multiple plexcitons in colloidal materials: directing the energy flow at the nanoscale. Nanoscale, 2021, 13, 6005-6015.	2.8	12
94	Activation of Oximic Nucleophiles by Coordination of Transition Metal Ions. European Journal of Organic Chemistry, 2000, 2000, 1045-1050.	1.2	11
95	Poly(ethylene glycol)-supported copper(II) triazacyclononane: an efficient, recoverable, and recyclable catalyst for the cleavage of a phosphodiester. Tetrahedron Letters, 2003, 44, 535-538.	0.7	11
96	Distance between Metal Centres Affects Catalytic Efficiency of Dinuclear Co ^{III} Complexes in the Hydrolysis of a Phosphate Diester. European Journal of Organic Chemistry, 2018, 2018, 5375-5381.	1.2	11
97	Multimodal ¹⁹ Fâ€NMR Dopamine Detection and Imaging with a Nanoparticleâ€Based Displacement Assay. Chemistry - A European Journal, 2018, 24, 13036-13042.	1.7	11
98	Synthesis, Purification, and Characterization of Negatively Charged Gold Nanoparticles for Cation Sensing. Journal of Chemical Education, 2019, 96, 2292-2299.	1.1	11
99	Combined Action of Human Commensal Bacteria and Amorphous Silica Nanoparticles on the Viability and Immune Responses of Dendritic Cells. Vaccine Journal, 2017, 24, .	3.2	10
100	Phosphate Ester Hydrolysis: The Path From Mechanistic Investigation to the Realization of Artificial Enzymes. Advances in Physical Organic Chemistry, 2017, 51, 129-186.	0.5	10
101	Plasmonâ€Assisted Energy Transfer in Hybrid Nanosystems. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800508.	1.2	10
102	Multifunctional, CD44v6-Targeted ORMOSIL Nanoparticles Enhance Drugs Toxicity in Cancer Cells. Nanomaterials, 2020, 10, 298.	1.9	10
103	Plexcitonic Nanohybrids Based on Gold Nanourchins: The Role of the Capping Layer. Journal of Physical Chemistry C, 2021, 125, 19897-19905.	1.5	10
104	Kinetic Amplification of the Enantioselective Cleavage of α-Amino Acid Esters by Metallomicelles. Langmuir, 1998, 14, 975-978.	1.6	9
105	Sensor arrays made by self-organized nanoreceptors for detection and discrimination of carboxylate drugs. Analyst, The, 2018, 143, 5754-5763.	1.7	9
106	Glucosamine Phosphate Induces AuNPs Aggregation and Fusion into Easily Functionalizable Nanowires. Nanomaterials, 2019, 9, 622.	1.9	9
107	When ring makes the difference: coordination properties of Cu ²⁺ /Cu ⁺ complexes with sulfur-pendant polyazamacrocycles for radiopharmaceutical applications. New Journal of Chemistry, 2022, 46, 10012-10025.	1.4	9
108	Ultrafast Dynamics of Multiple Plexcitons in Colloidal Nanomaterials: The Mediating Action of Plasmon Resonances and Dark States. Journal of Physical Chemistry Letters, 2022, 13, 6412-6419.	2.1	9

#	Article	IF	CITATIONS
109	The Biotin–Avidin Interaction in Biotinylated Gold Nanoparticles and the Modulation of Their Aggregation. Nanomaterials, 2021, 11, 1559.	1.9	8
110	Specific and nondisruptive interaction of guanidium-functionalized gold nanoparticles with neutral phospholipid bilayers. Communications Chemistry, 2021, 4, .	2.0	8
111	Chemical optimisation of a sol–gel procedure for the development of fluorescence Cu(II) nanosensors. Applied Surface Science, 2007, 253, 7178-7187.	3.1	7
112	Photoswitchable NIRâ€Emitting Gold Nanoparticles. Angewandte Chemie, 2016, 128, 11230-11234.	1.6	7
113	Controlling the Decoration of the Reduced Graphene Oxide Surface with Pyrene-Functionalized Gold Nanoparticles. Physica Status Solidi (B): Basic Research, 2017, 254, 1700281.	0.7	7
114	The Zn(II)-1,4,7-Trimethyl-1,4,7-Triazacyclononane Complex: A Monometallic Catalyst Active in Two Protonation States. Frontiers in Chemistry, 2019, 7, 469.	1.8	7
115	Hybrid nanoreceptors for high sensitivity detection of small molecules by NMR chemosensing. Chemical Communications, 2021, 57, 3002-3005.	2.2	7
116	The Mechanism of Cleavage of RNA Phosphodiesters by a Gold Nanoparticle Nanozyme. Chemistry - A European Journal, 2021, 27, 8143-8148.	1.7	7
117	Engineering the Aggregation of Dyes on Ligand-Shell Protected Gold Nanoparticles to Promote Plexcitons Formation. Nanomaterials, 2022, 12, 1180.	1.9	7
118	Nanoscale Supramolecular Probes for the Naked-Eye Detection of Illicit Drugs. ACS Applied Nano Materials, 2020, 3, 9616-9621.	2.4	6
119	Working in a Team: Development of a Device for Water Hardness Sensing Based on an Arduino–Nanoparticle System. Journal of Chemical Education, 2020, 97, 2025-2032.	1.1	6
120	Preparation of ORMOSIL nanoparticles conjugated with vitamin D ₃ analogues and their biological evaluation. RSC Advances, 2016, 6, 31840-31849.	1.7	5
121	Conjugates between minor groove binders and Zn(II)-tach complexes: Synthesis, characterization, and interaction with plasmid DNA. Tetrahedron, 2017, 73, 3014-3024.	1.0	5
122	¹ H NMR Chemosensing of Potassium Ions Enabled by Guestâ€Induced Selectivity Switch of a Gold Nanoparticle/Crown Ether Nanoreceptor. ChemPlusChem, 2019, 84, 1498-1502.	1.3	5
123	Molecular Recognition by Gold Nanoparticle-Based Receptors as Defined through Surface Morphology and Pockets Fingerprint. Journal of Physical Chemistry Letters, 2021, 12, 5616-5622.	2.1	5
124	A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angewandte Chemie, 2021, 133, 1443-1452.	1.6	4
125	Artificial Restriction Agents: Hydrolytic Agents for DNA Cleavage. , 0, , 369-394.		3
126	Formyl-Peptide Receptor Agonists and Amorphous SiO2-NPs Synergistically and Selectively Increase the Inflammatory Responses of Human Monocytes and PMNs. Nanobiomedicine, 2016, 3, 2.	4.4	3

#	Article	IF	CITATIONS
127	Nanoparticles Based on Cross-Linked Poly(Lipoic Acid) Protect Macrophages and Cardiomyocytes from Oxidative Stress and Ischemia Reperfusion Injury. Antioxidants, 2022, 11, 907.	2.2	3
128	Chromatographic NMR Spectroscopy with Hollow Silica Spheres. Angewandte Chemie, 2016, 128, 2783-2787.	1.6	2
129	Natively porous films as halide anion fluorescence optical sensors. Thin Solid Films, 2016, 600, 53-58.	0.8	2
130	Aluminum Fluorescence Detection with a FRET Amplified Chemosensor. ChemInform, 2003, 34, no.	0.1	1
131	Fluorescent silica nanoparticles. , 2006, , .		1
132	Interaction with plasmid DNA of Hoechst-TACN conjugates. Supramolecular Chemistry, 2020, 32, 91-105.	1.5	1
133	A Fluorescence Nanosensor for Cu2+ on Silica Particles ChemInform, 2004, 35, no.	0.1	0
134	Artificial Metallonucleases ChemInform, 2005, 36, no.	0.1	0
135	Molecularâ€Dynamicsâ€Simulationâ€Directed Rational Design of Nanoreceptors with Targeted Affinity. Angewandte Chemie, 2019, 131, 7784-7789.	1.6	0