List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7556682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and Characterization of Alamandine. Circulation Research, 2013, 112, 1104-1111.	4.5	323
2	Towards An Understanding of the Mechanism of Electron-Capture Dissociation: A Historical Perspective and Modern Ideas. European Journal of Mass Spectrometry, 2002, 8, 337-349.	1.0	227
3	Insights into the Cellular Response Triggered by Silver Nanoparticles Using Quantitative Proteomics. ACS Nano, 2014, 8, 2161-2175.	14.6	189
4	Dissociative capture of hot (3–13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chemical Physics Letters, 2002, 356, 201-206.	2.6	184
5	Proteomics-Grade de Novo Sequencing Approach. Journal of Proteome Research, 2005, 4, 2348-2354.	3.7	147
6	Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicology in Vitro, 2014, 28, 1280-1289.	2.4	146
7	Complete Characterization of Posttranslational Modification Sites in the Bovine Milk Protein PP3 by Tandem Mass Spectrometry with Electron Capture Dissociation as the Last Stage. Analytical Chemistry, 2003, 75, 2355-2361.	6.5	126
8	Distinguishing of Ile/Leu Amino Acid Residues in the PP3 Protein by (Hot) Electron Capture Dissociation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2003, 75, 1267-1274.	6.5	126
9	Combined infrared multiphoton dissociation and electron capture dissociation with a hollow electron beam in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2003, 17, 1759-1768.	1.5	122
10	Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides. Journal of the American Society for Mass Spectrometry, 2007, 18, 113-120.	2.8	120
11	Changes in Volatile Compounds of Carrots (Daucus carotaL.) During Refrigerated and Frozen Storage. Journal of Agricultural and Food Chemistry, 2003, 51, 5400-5407.	5.2	119
12	Undesirable Charge-Enhancement of Isobaric Tagged Phosphopeptides Leads to Reduced Identification Efficiency. Journal of Proteome Research, 2010, 9, 4045-4052.	3.7	117
13	Improved low-energy electron injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2001, 15, 1849-1854.	1.5	112
14	C??C Backbone Fragmentation Dominates in Electron Detachment Dissociation of Gas-Phase Polypeptide Polyanions. Chemistry - A European Journal, 2005, 11, 1803-1812.	3.3	112
15	Facile Disulfide Bond Cleavage in Gaseous Peptide and Protein Cations by Ultraviolet Photodissociation at 157 nm. Angewandte Chemie - International Edition, 2005, 44, 6399-6403.	13.8	99
16	Peptide Sequencing and Characterization of Post-Translational Modifications by Enhanced Ion-Charging and Liquid Chromatography Electron-Transfer Dissociation Tandem Mass Spectrometry. Analytical Chemistry, 2007, 79, 9243-9252.	6.5	98
17	Electron capture dissociation distinguishes a single D-amino acid in a protein and probes the tertiary structure. Journal of the American Society for Mass Spectrometry, 2004, 15, 1087-1098.	2.8	93
18	Electron capture dissociation of polypeptides in a three-dimensional quadrupole ion trap: Implementation and first results. Journal of the American Society for Mass Spectrometry, 2005, 16, 22-27	2.8	79

#	Article	IF	CITATIONS
19	Complementary Sequence Preferences of Electron-Capture Dissociation and Vibrational Excitation in Fragmentation of Polypeptide Polycations. Angewandte Chemie - International Edition, 2006, 45, 5301-5303.	13.8	79
20	Quantitative Analysis of Aroma Compounds in Carrot (Daucus carotaL.) Cultivars by Capillary Gas Chromatography Using Large-Volume Injection Technique. Journal of Agricultural and Food Chemistry, 2001, 49, 4342-4348.	5.2	73
21	Analysis of Histidine Phosphorylation Using Tandem MS and Ionâ^'Electron Reactions. Analytical Chemistry, 2007, 79, 7450-7456.	6.5	64
22	Highâ€performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis: Observations and implications. Proteomics, 2016, 16, 907-914.	2.2	64
23	Prediction of NCα bond cleavage frequencies in electron capture dissociation of Trp-cage dications by force-field molecular dynamics simulations. International Journal of Mass Spectrometry, 2006, 248, 124-135.	1.5	59
24	Can the (M• — X) Region in Electron Capture Dissociation Provide Reliable Information on Amino Acid Composition of Polypeptides?. European Journal of Mass Spectrometry, 2002, 8, 461-469.	1.0	55
25	Zwitterionic States in Gas-Phase Polypeptide Ions Revealed by 157-nm Ultra-Violet Photodissociation. Chemistry - A European Journal, 2006, 12, 7920-7928.	3.3	54
26	Moving Pieces in a Venomic Puzzle: Unveiling Post-translationally Modified Toxins from <i>Tityus serrulatus</i> . Journal of Proteome Research, 2013, 12, 3460-3470.	3.7	52
27	Protein corona formed on silver nanoparticles in blood plasma is highly selective and resistant to physicochemical changes of the solution. Environmental Science: Nano, 2019, 6, 1089-1098.	4.3	52
28	Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an <i>in vitro</i> human blood-brain barrier model. Nanotoxicology, 2019, 13, 221-239.	3.0	51
29	A Direct Comparison of Protein Structure in the Gas and Solution Phase:  The Trp-cage. Journal of Physical Chemistry B, 2007, 111, 13147-13150.	2.6	46
30	Analytical Utility of Small Neutral Losses from Reduced Species in Electron Capture Dissociation Studied Using SwedECD Database. Analytical Chemistry, 2008, 80, 8089-8094.	6.5	42
31	Secondary Losses via γ-Lactam Formation in Hot Electron Capture Dissociation:  A Missing Link to Complete de Novo Sequencing of Proteins?. Journal of the American Chemical Society, 2003, 125, 6628-6629.	13.7	41
32	Dissociation of peptide ions by fast atom bombardment in a quadrupole ion trap. Rapid Communications in Mass Spectrometry, 2005, 19, 2163-2171.	1.5	41
33	Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides. Nanomedicine, 2019, 14, 3089-3104.	3.3	41
34	Letter: The Diagnostic Value of Amino Acid Side-Chain Losses in Electron Capture Dissociation of Polypeptides. Comment on: "Can the (M.â^'X) Region in Electron Capture Dissociation Provide Reliable Information on Amino Acid Composition of Polypeptides?â€; Eur. J. Mass Spectrom. 8, 461–469 (2002). European Journal of Mass Spectrometry. 2003. 9, 221-222.	1.0	36
35	Electronic Excitation Gives Informative Fragmentation of Polypeptide Cations and Anions. European Journal of Mass Spectrometry, 2002, 8, 117-121.	1.0	35
36	Determination of the location of positive charges in gas-phase polypeptide polycations by tandem mass spectrometry. International Journal of Mass Spectrometry, 2006, 252, 204-212.	1.5	34

#	Article	IF	CITATIONS
37	On studying protein phosphorylation patterns using bottom-up LC–MS/MS: the case of human α-casein. Analyst, The, 2007, 132, 768-776.	3.5	33
38	Probing solution- and gas-phase structures of Trp-cage cations by chiral substitution and spectroscopic techniques. International Journal of Mass Spectrometry, 2006, 253, 263-273.	1.5	31
39	DirectMS1: MS/MS-Free Identification of 1000 Proteins of Cellular Proteomes in 5 Minutes. Analytical Chemistry, 2020, 92, 4326-4333.	6.5	31
40	Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Toxicology in Vitro, 2017, 40, 134-143.	2.4	29
41	SwedCAD, a Database of Annotated High-Mass Accuracy MS/MS Spectra of Tryptic Peptides. Journal of Proteome Research, 2007, 6, 4063-4067.	3.7	28
42	SuperQuant: A Data Processing Approach to Increase Quantitative Proteome Coverage. Analytical Chemistry, 2015, 87, 6319-6327.	6.5	26
43	Backbone Carbonyl Group Basicities Are Related to Gas-Phase Fragmentation of Peptides and Protein Folding. Angewandte Chemie - International Edition, 2007, 46, 1481-1484.	13.8	25
44	Relative Specificities of Water and Ammonia Losses from Backbone Fragments in Collision-Activated Dissociation. Journal of Proteome Research, 2007, 6, 2669-2673.	3.7	23
45	Towards liquid chromatography time-scale peptide sequencing and characterization of post-translational modifications in the negative-ion mode using electron detachment dissociation tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 2008, 19, 1156-1162.	2.8	23
46	The proteomic profile of Stichodactyla duerdeni secretion reveals the presence of a novel O-linked glycopeptide. Journal of Proteomics, 2013, 87, 89-102.	2.4	23
47	Deconvolution of Mixture Spectra and Increased Throughput of Peptide Identification by Utilization of Intensified Complementary Ions Formed in Tandem Mass Spectrometry. Journal of Proteome Research, 2013, 12, 3362-3371.	3.7	22
48	Dissociative recombination cross section and branching ratios of protonated dimethyl disulfide and N-methylacetamide. Journal of Chemical Physics, 2004, 121, 5700-5708.	3.0	21
49	Physicochemical Properties Determining the Detection Probability of Tryptic Peptides in Fourier Transform Mass Spectrometry. A Correlation Study. Analytical Chemistry, 2004, 76, 5872-5877.	6.5	21
50	Co-exposure to silver nanoparticles and cadmium induce metabolic adaptation in HepG2 cells. Nanotoxicology, 2018, 12, 781-795.	3.0	21
51	Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS Nano, 2020, 14, 4096-4110.	14.6	20
52	Peptide de novo sequencing of mixture tandem mass spectra. Proteomics, 2016, 16, 2470-2479.	2.2	19
53	Biosaur: An openâ€source Python software for liquid chromatography–mass spectrometry peptide feature detection with ion mobility support. Rapid Communications in Mass Spectrometry, 2021, , e9045.	1.5	19
54	Boosting MS1-only Proteomics with Machine Learning Allows 2000 Protein Identifications in Single-Shot Human Proteome Analysis Using 5 min HPLC Gradient. Journal of Proteome Research, 2021, 20, 1864-1873.	3.7	18

#	Article	IF	CITATIONS
55	Overcoming the Instability of Gaseous Peptide Phosphate Ester Groups by Dimetal Protection. Angewandte Chemie - International Edition, 2012, 51, 3216-3219.	13.8	17
56	Multi-Omics Analysis of Glioblastoma Cells' Sensitivity to Oncolytic Viruses. Cancers, 2021, 13, 5268.	3.7	16
57	The selectivity of water-based pyrophosphate recognition is tuned by metal substitution in dimetallic receptors. Dalton Transactions, 2015, 44, 11877-11886.	3.3	15
58	Reduction in Database Search Space by Utilization of Amino Acid Composition Information from Electron Transfer Dissociation and Higher-Energy Collisional Dissociation Mass Spectra. Analytical Chemistry, 2012, 84, 6638-6645.	6.5	14
59	Automated and High Confidence Protein Phosphorylation Site Localization Using Complementary Collision-Activated Dissociation and Electron Transfer Dissociation Tandem Mass Spectrometry. Analytical Chemistry, 2012, 84, 9694-9699.	6.5	14
60	Elucidating the cellular response of silver nanoparticles as a potential combinatorial agent for cisplatin chemotherapy. Journal of Nanobiotechnology, 2020, 18, 164.	9.1	14
61	Effects of Peptide Backbone Amide-to-Ester Bond Substitution on the Cleavage Frequency in Electron Capture Dissociation and Collision-Activated Dissociation. Journal of the American Society for Mass Spectrometry, 2011, 22, 1441-1452.	2.8	13
62	Angiotensin-(1-7) oral treatment after experimental myocardial infarction leads to downregulation of CXCR4. Journal of Proteomics, 2019, 208, 103486.	2.4	13
63	Comparative proteomics as a tool for identifying specific alterations within interferon response pathways in human glioblastoma multiforme cells. Oncotarget, 2018, 9, 1785-1802.	1.8	12
64	Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy. Applied Microbiology and Biotechnology, 2020, 104, 4027-4041.	3.6	11
65	Isocratic Solid Phase Extraction-Liquid Chromatography (SPE-LC) Interfaced to High-Performance Tandem Mass Spectrometry for Rapid Protein Identification. Journal of Proteome Research, 2008, 7, 3159-3167.	3.7	10
66	Use of quasi-SMILES to build models based on quantitative results from experiments with nanomaterials. Chemosphere, 2022, 303, 135086.	8.2	10
67	Towards the Standard-Module Approach to Disulfide-Linked Polypeptide Nanostructures. I. Methodological Prerequisites and Mass Spectrometric Characterization of the Test Two-Loop Structure. European Journal of Mass Spectrometry, 2003, 9, 139-148.	1.0	9
68	Uranyl Photocleavage of Phosphopeptides Yields Truncated Câ€Terminally Amidated Peptide Products. ChemBioChem, 2017, 18, 1117-1122.	2.6	9
69	SuperQuant-assisted comparative proteome analysis of glioblastoma subpopulations allows for identification of potential novel therapeutic targets and cell markers. Oncotarget, 2018, 9, 9400-9414.	1.8	8
70	Effect of Metals in Biomimetic Dimetal Complexes on Affinity and Gas-Phase Protection of Phosphate Esters. Analytical Chemistry, 2015, 87, 7060-7068.	6.5	7
71	Assessment of protein extraction and digestion efficiency of well-established shotgun protocols for heart proteomics. Analytical Biochemistry, 2019, 578, 51-59.	2.4	7
72	PhosphoShield: Improving Trypsin Digestion of Phosphoproteins by Shielding the Negatively Charged Phosphate Moiety. Journal of the American Society for Mass Spectrometry, 2020, 31, 2053-2060.	2.8	7

#	Article	IF	CITATIONS
73	Electron Transfer Dissociation Reveals Changes in the Cleavage Frequencies of Backbone Bonds Distant to Amide-to-Ester Substitutions in Polypeptides. Journal of the American Society for Mass Spectrometry, 2011, 22, 1953-7.	2.8	5
74	Cardiomyocyte Proteome Remodeling due to Isoproterenolâ€Induced Cardiac Hypertrophy during the Compensated Phase. Proteomics - Clinical Applications, 2020, 14, e2000017.	1.6	4
75	Moving Pieces in a Cellular Puzzle: A Cryptic Peptide from the Scorpion Toxin Ts14 Activates AKT and ERK Signaling and Decreases Cardiac Myocyte Contractility via Dephosphorylation of Phospholamban. Journal of Proteome Research, 2020, 19, 3467-3477.	3.7	4
76	Proteome-wide analysis reveals molecular pathways affected by AgNP in a ROS-dependent manner. Nanotoxicology, 2022, 16, 73-87.	3.0	4
77	Charge Inversion of Phospholipids by Dimetal Complexes for Positive Ion-Mode Electrospray Ionization Mass Spectrometry Analysis. Analytical Chemistry, 2015, 87, 8732-8739.	6.5	3
78	The Cytotoxicity of Metal Nanoparticles Depends on Their Synergistic Interactions. Particle and Particle Systems Characterization, 2020, 37, 2000135.	2.3	3
79	Biological and Molecular Effects of Trypanosoma cruzi Residence in a LAMP-Deficient Intracellular Environment. Frontiers in Cellular and Infection Microbiology, 2021, 11, 788482.	3.9	3
80	N-terminal sequence tagging using reliably determined b2 ions: A useful approach to deconvolute tandem mass spectra of co-fragmented peptides in proteomics. Journal of Proteomics, 2014, 103, 254-260.	2.4	2
81	Proteomic analysis reveals stageâ€specific reprogramed metabolism for the primary breast cancer cell lines MGSOâ€3 and MACLâ€1. Proteomics, 2022, 22, .	2.2	2
82	Phosphoproteomic studies of alamandine signaling in CHOâ€MrgD and human pancreatic carcinoma cells: An antiproliferative effect is unveiled. Proteomics, 2022, 22, .	2.2	2
83	THE EFFECT OF STORAGE CONDITIONS ON THE DEVELOPMENT OF CARROT VOLATILES. Acta Horticulturae, 2003, , 581-585.	0.2	1
84	On the Authenticity of a Relic: An Archaeometric Investigation of the Supposed Bread Sack of Saint Francesco of Assisi. Radiocarbon, 2017, 59, 1425-1433.	1.8	1
85	GiTx1(β/κ-theraphotoxin-Gi1a), a novel toxin from the venom of Brazilian tarantula Grammostola iheringi (Mygalomorphae, Theraphosidae): Isolation, structural assessments and activity on voltage-gated ion channels. Biochimie, 2020, 176, 138-149.	2.6	1
86	Towards an Understanding of the Mechanism of Electron-Capture Dissociation: A Historical Perspective and Modern Ideas. ChemInform, 2003, 34, no.	0.0	0
87	HUMOS: How to Understand My Orbitrap Spectrum?—An Interactive Web-Based Tool to Teach the Basics of Mass-Spectrometry-Based Proteomics. Journal of Proteome Research, 2020, 19, 3910-3918.	3.7	0