
Mojtaba Aghajani Delavar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7556518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-dimensional modeling of photo fermentative biohydrogen generation in a microbioreactor. Renewable Energy, 2022, 181, 1034-1045.	8.9	13
2	Charge and mass transport and modeling principles in proton-exchange membrane (PEM) fuel cells. , 2022, , 173-197.		2
3	Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Science of the Total Environment, 2022, 822, 153559.	8.0	85
4	Modeling microbial growth of dynamic membrane in a biohydrogen production bioreactor. International Journal of Hydrogen Energy, 2022, 47, 7666-7681.	7.1	10
5	Bioreactor concepts, types, and modeling. , 2022, , 195-245.		Ο
6	Hybrid lattice Boltzmann continuum–discrete models. , 2022, , 153-193.		1
7	Discrete models. , 2022, , 119-152.		0
8	Continuum models. , 2022, , 91-118.		0
9	Concept and fundamentals of biofilms. , 2022, , 23-61.		0
10	A parametric study of the heat and mass diffusion dimensionless parameter in SOFC with DIR by lattice Boltzmann method. Journal of Thermal Analysis and Calorimetry, 2021, 146, 2639-2653.	3.6	4
11	Modeling coupled temperature and transport effects on biofilm growth using thermal lattice Boltzmann model. AICHE Journal, 2021, 67, e17122.	3.6	13
12	Modelling Watershed and River Basin Processes in Cold Climate Regions: A Review. Water (Switzerland), 2021, 13, 518.	2.7	11
13	Numerical investigation of pH control on dark fermentation and hydrogen production in a microbioreactor. Fuel, 2021, 292, 120355.	6.4	27
14	Lattice Boltzmann Method in Modeling Biofilm Formation, Growth and Detachment. Sustainability, 2021, 13, 7968.	3.2	15
15	Modelling denitrification process in a static mixer–reactor using lattice-Boltzmann method. Chemical Engineering Research and Design, 2021, 173, 140-149.	5.6	1
16	Thermal mixing, cooling and entropy generation in a micromixer with a porous zone by the lattice Boltzmann method. Journal of Thermal Analysis and Calorimetry, 2020, 140, 1321-1339.	3.6	28
17	Numerical study of enhancing vehicle radiator performance using different porous fin configurations and materials. Heat Transfer - Asian Research, 2020, 49, 502-518.	2.8	10
18	Influence of geometrical parameters arrangement on solidification process of ice-on-coil storage system. SN Applied Sciences, 2020, 2, 1.	2.9	9

#	Article	IF	CITATIONS
19	Lattice Boltzmann simulation of droplet deformation and breakup due to collision with obstacles in microchannel. Indian Journal of Physics, 2020, 94, 1767-1776.	1.8	3
20	Role of Carbon Dioxide Reforming Reaction Rate of Methane in Solid Oxide Fuel Cell Simulation: Effect of Inlet Fuel Related Parameters. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-20.	2.3	0
21	Numerical prediction of humidification process in planar porous membrane humidifier of a PEM fuel cell system to evaluate the effects of operating and geometrical parameters. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1687-1701.	3.6	9
22	Modeling Combined Effects of Temperature and Structure on Competition and Growth of Multispecies Biofilms in Microbioreactors. Industrial & Engineering Chemistry Research, 2020, 59, 16122-16135.	3.7	18
23	Thermodynamic analysis the performance of hybrid solar-geothermal power plant equipped with air-cooled condenser. Applied Thermal Engineering, 2020, 172, 115160.	6.0	33
24	Poreâ€scale modeling of competition and cooperation of multispecies biofilms for nutrients in changing environments. AICHE Journal, 2020, 66, e16919.	3.6	14
25	Numerical Study of a Horizontal and Vertical Shell and Tube Ice Storage Systems Considering Three Types of Tube. Applied Sciences (Switzerland), 2020, 10, 1059.	2.5	20
26	Evaluation the effects of geometrical parameters on the performance of pillow plate heat exchanger. Chemical Engineering Research and Design, 2019, 150, 74-83.	5.6	37
27	Numerical Modeling of the Melting Process in a Shell and Coil Tube Ice Storage System for Air-Conditioning Application. Applied Sciences (Switzerland), 2019, 9, 2726.	2.5	27
28	Effects of geometrical and operational parameters on heat transfer and fluid flow of three various water based nanofluids in a shell and coil tube heat exchanger. SN Applied Sciences, 2019, 1, 1.	2.9	36
29	Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: Numerical simulation. Advanced Powder Technology, 2019, 30, 1356-1365.	4.1	75
30	Numerical analysis reliability control for a doubleâ€pipe heat exchanger with virtual entropy generation method. Heat Transfer - Asian Research, 2019, 48, 1933-1945.	2.8	0
31	Thermodynamic analysis of waste heat recovery from hybrid system of proton exchange membrane fuel cell and vapor compression refrigeration cycle by recuperative organic Rankine cycle. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1699-1712.	3.6	31
32	Thermal performance of wavy fin in a compact heat exchanger duct using Galerkin method. Applied Thermal Engineering, 2018, 130, 1290-1298.	6.0	9
33	Waste heat recovery from a 1180†kW proton exchange membrane fuel cell (PEMFC) system by Recuperative organic Rankine cycle (RORC). Energy, 2018, 157, 353-366.	8.8	57
34	Numerical study of heat transfer enhancement using perforated dual twisted tape inserts in convergingâ€diverging tubes. Heat Transfer - Asian Research, 2018, 47, 754-767.	2.8	17
35	NUMERICAL INVESTIGATION OF MELTING PROCESS IN HORIZONTAL SHELL-AND-TUBE PHASE CHANGE MATERIAL STORAGE CONSIDERING DIFFERENT HTF CHANNEL GEOMETRIES. Heat Transfer Research, 2017, 48, 1515-1529.	1.6	11
36	CFD simulation of effects of dimension changes of buildings on pollution dispersion in the built environment. AEJ - Alexandria Engineering Journal, 2016, 55, 3135-3144.	6.4	13

#	Article	IF	CITATIONS
37	Numerical simulation of heat and mass transfer during hydrogen desorption in metal hydride storage tank by Lattice Boltzmann method. International Journal of Hydrogen Energy, 2016, 41, 413-424.	7.1	39
38	Turbulent heat transfer of Al2O3–water nanofluid inside helically corrugated tubes: Numerical study. International Communications in Heat and Mass Transfer, 2013, 41, 68-75.	5.6	86
39	Investigation of biomass gasification hydrogen and electricity co-production with carbon dioxide capture and storage. International Journal of Hydrogen Energy, 2013, 38, 3630-3639.	7.1	18
40	Numerical Investigation of Forced Convection in a Channel with Solid Block inside a Square Porous Block. Journal of Energy, 2013, 2013, 1-7.	3.2	2
41	Forced convection and entropy generation inside a channel with a heatâ€generating porous block. Heat Transfer - Asian Research, 2012, 41, 580-600.	2.8	14
42	Numerical simulation of direct methanol fuel cells using lattice Boltzmann method. International Journal of Hydrogen Energy, 2010, 35, 9306-9317.	7.1	37
43	Effect of the Heater Location on Heat Transfer and Entropy Generation in the Cavity Using the Lattice Boltzmann Method. Heat Transfer Research, 2009, 40, 521-536.	1.6	32
44	Investigation of Porous Block Porosity on Flow and Entropy Generation inside a T-Micromixer Using Lattice Boltzmann Method. Applied Mechanics and Materials, 0, 229-231, 282-286.	0.2	0