Rachel Fearns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7555950/publications.pdf

Version: 2024-02-01

50 papers

3,590 citations

218662 26 h-index 50 g-index

56 all docs

56 docs citations

56 times ranked 4653 citing authors

#	Article	IF	Citations
1	Helical ordering of envelopeâ€associated proteins and glycoproteins in respiratory syncytial virus. EMBO Journal, 2022, 41, e109728.	7.8	29
2	Distinctive features of the respiratory syncytial virus priming loop compared to other non-segmented negative strand RNA viruses. PLoS Pathogens, 2022, 18, e1010451.	4.7	5
3	Genetic instability of RNA viruses. , 2021, , 23-38.		O
4	EDP-938, a novel nucleoprotein inhibitor of respiratory syncytial virus, demonstrates potent antiviral activities in vitro and in a non-human primate model. PLoS Pathogens, 2021, 17, e1009428.	4.7	21
5	Respiratory syncytial virus M2-1 protein associates non-specifically with viral messenger RNA and with specific cellular messenger RNA transcripts. PLoS Pathogens, 2021, 17, e1009589.	4.7	6
6	Comparison of RNA synthesis initiation properties of non-segmented negative strand RNA virus polymerases. PLoS Pathogens, 2021, 17, e1010151.	4.7	8
7	Structure of the human metapneumovirus polymerase phosphoprotein complex. Nature, 2020, 577, 275-279.	27.8	72
8	The respiratory syncytial virus polymerase can perform RNA synthesis with modified primers and nucleotide analogs. Virology, 2020, 540, 66-74.	2.4	6
9	Polymerase-tagged respiratory syncytial virus reveals a dynamic rearrangement of the ribonucleocapsid complex during infection. PLoS Pathogens, 2020, 16, e1008987.	4.7	16
10	RSV M2-1 Protein in Complex with RNA: Old Questions Are Answered and a New One Emerges. Structure, 2020, 28, 977-978.	3.3	3
11	The Respiratory Syncytial Virus Polymerase: AÂMultitasking Machine. Trends in Microbiology, 2019, 27, 969-971.	7.7	5
12	Killing two birds with one stone: How the respiratory syncytial virus polymerase initiates transcription and replication. PLoS Pathogens, 2019, 15, e1007548.	4.7	18
13	Ebolavirus polymerase uses an unconventional genome replication mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8535-8543.	7.1	24
14	Third Tofo Advanced Study Week on Emerging and Re-emerging Viruses, 2018. Antiviral Research, 2019, 162, 142-150.	4.1	3
15	Dual Catalytic Synthesis of Antiviral Compounds Based on Metallocarbene–Azide Cascade Chemistry. Journal of Organic Chemistry, 2018, 83, 6829-6842.	3.2	14
16	Development of an allosteric inhibitor class blocking RNA elongation by the respiratory syncytial virus polymerase complex. Journal of Biological Chemistry, 2018, 293, 16761-16777.	3.4	23
17	Mechanism for de novo initiation at two sites in the respiratory syncytial virus promoter. Nucleic Acids Research, 2018, 46, 6785-6796.	14.5	23
18	Orally Efficacious Broad-Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	162

#	Article	IF	CITATIONS
19	Polymerases of paramyxoviruses and pneumoviruses. Virus Research, 2017, 234, 87-102.	2.2	59
20	RNA elongation by respiratory syncytial virus polymerase is calibrated by conserved region V. PLoS Pathogens, 2017, 13, e1006803.	4.7	26
21	Investigating the Influence of Ribavirin on Human Respiratory Syncytial Virus RNA Synthesis by Using a High-Resolution Transcriptome Sequencing Approach. Journal of Virology, 2016, 90, 4876-4888.	3.4	32
22	New antiviral approaches for respiratory syncytial virus and other mononegaviruses: Inhibiting the RNA polymerase. Antiviral Research, 2016, 134, 63-76.	4.1	51
23	Novel diversity-oriented synthesis-derived respiratory syncytial virus inhibitors identified via a high throughput replicon-based screen. Antiviral Research, 2016, 131, 19-25.	4.1	10
24	Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531, 381-385.	27.8	1,245
25	Interactome Analysis of the Human Respiratory Syncytial Virus RNA Polymerase Complex Identifies Protein Chaperones as Important Cofactors That Promote L-Protein Stability and RNA Synthesis. Journal of Virology, 2015, 89, 917-930.	3.4	65
26	Initiation and regulation of paramyxovirus transcription and replication. Virology, 2015, 479-480, 545-554.	2.4	105
27	Respiratory Syncytial Virus Inhibitor AZ-27 Differentially Inhibits Different Polymerase Activities at the Promoter. Journal of Virology, 2015, 89, 7786-7798.	3.4	48
28	Decapping protein 1 phosphorylation modulates IL-8 expression during respiratory syncytial virus infection. Virology, 2015, 481, 199-209.	2.4	4
29	Molecular Basis for the Selective Inhibition of Respiratory Syncytial Virus RNA Polymerase by 2'-Fluoro-4'-Chloromethyl-Cytidine Triphosphate. PLoS Pathogens, 2015, 11, e1004995.	4.7	69
30	Respiratory Syncytial Virus Can Infect Basal Cells and Alter Human Airway Epithelial Differentiation. PLoS ONE, 2014, 9, e102368.	2.5	77
31	Factors affecting de novo RNA synthesis and back-priming by the respiratory syncytial virus polymerase. Virology, 2014, 462-463, 318-327.	2.4	24
32	Respiratory Syncytial Virus Polymerase Can Initiate Transcription from Position 3 of the Leader Promoter. Journal of Virology, 2013, 87, 3196-3207.	3.4	54
33	Respiratory Syncytial Virus: Virology, Reverse Genetics, and Pathogenesis of Disease. Current Topics in Microbiology and Immunology, 2013, 372, 3-38.	1.1	193
34	The Respiratory Syncytial Virus Polymerase Has Multiple RNA Synthesis Activities at the Promoter. PLoS Pathogens, 2012, 8, e1002980.	4.7	74
35	The first two nucleotides of the respiratory syncytial virus antigenome RNA replication product can be selected independently of the promoter terminus. Rna, 2011, 17, 1895-1906.	3.5	25
36	Roles of the respiratory syncytial virus trailer region: Effects of mutations on genome production and stress granule formation. Virology, 2010, 406, 241-252.	2.4	55

3

#	Article	IF	CITATIONS
37	Evidence that the polymerase of respiratory syncytial virus initiates RNA replication in a nontemplated fashion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10226-10231.	7.1	35
38	How RNA viruses maintain their genome integrity. Journal of General Virology, 2010, 91, 1373-1387.	2.9	70
39	Akt Inhibitor Akt-IV Blocks Virus Replication through an Akt-Independent Mechanism. Journal of Virology, 2009, 83, 11665-11672.	3.4	26
40	Cation currents in human airway epithelial cells induced by infection with influenza A virus. Journal of Physiology, 2009, 587, 3159-3173.	2.9	13
41	Unravelling the complexities of respiratory syncytial virus RNA synthesis. Journal of General Virology, 2006, 87, 1805-1821.	2.9	97
42	Interferon-Induced Alterations in the Pattern of Parainfluenza Virus 5 Transcription and Protein Synthesis and the Induction of Virus Inclusion Bodies. Journal of Virology, 2005, 79, 14112-14121.	3.4	30
43	Evidence that the Respiratory Syncytial Virus Polymerase Is Recruited to Nucleotides 1 to 11 at the $3\hat{a} \in \mathbb{R}^2$ End of the Nucleocapsid and Can Scan To Access Internal Signals. Journal of Virology, 2005, 79, 11311-11322.	3.4	34
44	Identification of Internal Sequences in the 3′ Leader Region of Human Respiratory Syncytial Virus That Enhance Transcription and Confer Replication Processivity. Journal of Virology, 2005, 79, 2449-2460.	3.4	47
45	Mapping the Transcription and Replication Promoters of Respiratory Syncytial Virus. Journal of Virology, 2002, 76, 1663-1672.	3.4	68
46	Functional Analysis of the Genomic and Antigenomic Promoters of Human Respiratory Syncytial Virus. Journal of Virology, 2000, 74, 6006-6014.	3.4	49
47	Role of the M2-1 Transcription Antitermination Protein of Respiratory Syncytial Virus in Sequential Transcription. Journal of Virology, 1999, 73, 5852-5864.	3.4	207
48	Rational Design of Live-Attenuated Recombinant Vaccine Virus for Human Respiratory Syncytial Virus by Reverse Genetics. Advances in Virus Research, 1999, 54, 423-451.	2.1	78
49	Model for Polymerase Access to the Overlapped L Gene of Respiratory Syncytial Virus. Journal of Virology, 1999, 73, 388-397.	3.4	62
50	Increased Expression of the N Protein of Respiratory Syncytial Virus Stimulates Minigenome Replication but Does Not Alter the Balance between the Synthesis of mRNA and Antigenome. Virology, 1997, 236, 188-201.	2.4	104