

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7555433/publications.pdf Version: 2024-02-01

DINCL

#	Article	IF	CITATIONS
1	Effect of additive manufacturing method and build angle on surface characteristics and Candida albicans adhesion to 3D printed denture base polymers. Journal of Dentistry, 2022, 116, 103889.	1.7	27
2	Influence of Surface Roughness on Biodegradability and Cytocompatibility of High-Purity Magnesium. Materials, 2022, 15, 3991.	1.3	4
3	Rinsing postprocessing procedure of a 3D-printed orthodontic appliance material: Impact of alternative post-rinsing solutions on the roughness, flexural strength and cytotoxicity. Dental Materials, 2022, 38, 1344-1353.	1.6	10
4	Chandler-Loop surveyed blood compatibility and dynamic blood triggered degradation behavior of Zn-4Cu alloy and Zn. Materials Science and Engineering C, 2021, 119, 111594.	3.8	6
5	Improved biodegradability of zinc and its alloys by sandblasting treatment. Surface and Coatings Technology, 2021, 405, 126678.	2.2	23
6	Repairability of a 3D printed denture base polymer: Effects of surface treatment and artificial aging on the shear bond strength. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104227.	1.5	33
7	Appropriately adapted properties of hot-extruded Zn–0.5Cu–xFe alloys aimed for biodegradable guided bone regeneration membrane application. Bioactive Materials, 2021, 6, 975-989.	8.6	37
8	<i>In vitro</i> degradation, biocompatibility and antibacterial properties of pure zinc: assessing the potential of Zn as a guided bone regeneration membrane. Journal of Materials Chemistry B, 2021, 9, 5114-5127.	2.9	22
9	Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis. Journal of Clinical Medicine, 2021, 10, 1070.	1.0	56
10	Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable material. Materials Science and Engineering C, 2021, 122, 111924.	3.8	24
11	Effect of post-rinsing time on the mechanical strength and cytotoxicity of a 3D printed orthodontic splint material. Dental Materials, 2021, 37, e314-e327.	1.6	35
12	Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials. Materials Science and Engineering C, 2021, 130, 112430.	3.8	7
13	Postpolymerization of a 3D-printed denture base polymer: Impact of post-curing methods on surface characteristics, flexural strength, and cytotoxicity. Journal of Dentistry, 2021, 115, 103856.	1.7	28
14	Limitation of Water-Soluble Tetrazolium Salt for the Cytocompatibility Evaluation of Zinc-Based Metals. Materials, 2021, 14, 6247.	1.3	5
15	Response of human periosteal cells to degradation products of zinc and its alloy. Materials Science and Engineering C, 2020, 108, 110208.	3.8	31
16	Evaluation of a Zn–2Ag–1.8Au–0.2V Alloy for Absorbable Biocompatible Materials. Materials, 2020, 13, 56.	1.3	16
17	Retentive Characteristics of a Polyetheretherketone Post-Core Restoration with Polyvinylsiloxane Attachments. Polymers, 2020, 12, 2005.	2.0	4
18	Application of totarol as natural antibacterial coating on dental implants for prevention of peri-implantitis. Materials Science and Engineering C, 2020, 110, 110701.	3.8	18

Ping Li

#	Article	IF	CITATIONS
19	Investigation of zincâ€ʿcopper alloys as potential materials for craniomaxillofacial osteosynthesis implants. Materials Science and Engineering C, 2019, 103, 109826.	3.8	70
20	Selection of extraction medium influences cytotoxicity of zinc and its alloys. Acta Biomaterialia, 2019, 98, 235-245.	4.1	60
21	Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications. Journal of Clinical Medicine, 2019, 8, 240.	1.0	221
22	In vitro and in vivo cytocompatibility evaluation of biodegradable magnesium-based stents: a review. Science China Materials, 2018, 61, 501-515.	3.5	28
23	Mechanical Characteristics, In Vitro Degradation, Cytotoxicity, and Antibacterial Evaluation of Zn-4.0Ag Alloy as a Biodegradable Material. International Journal of Molecular Sciences, 2018, 19, 755.	1.8	88
24	Biodegradable Zn-Cu-Fe Alloy as a Promising Material for Craniomaxillofacial Implants: An in vitro Investigation into Degradation Behavior, Cytotoxicity, and Hemocompatibility. Frontiers in Chemistry, 0, 10, .	1.8	10