Zhifen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7555323/publications.pdf Version: 2024-02-01

70100N | 111

#	Article	IF	CITATIONS
1	The effectiveness of computer-assisted Cognitive Behavioral Therapy (cCBT) for psychological outcomes in patients with laryngectomy: Randomized controlled trial. Journal of Affective Disorders, 2022, 300, 59-65.	4.1	7
2	The Efficacy of Computerized Cognitive Behavioral Therapy for Depressive and Anxiety Symptoms in Patients With COVID-19: Randomized Controlled Trial. Journal of Medical Internet Research, 2021, 23, e26883.	4.3	63
3	Association of the TLR4 gene with depressive symptoms and antidepressant efficacy in major depressive disorder. Neuroscience Letters, 2020, 736, 135292.	2.1	10
4	ldentification of antisense lncRNAs targetingÂCSK3β as a regulator in major depressive disorder. Epigenomics, 2020, 12, 1725-1738.	2.1	8
5	Brain structural and functional alterations in MDD patient with gastrointestinal symptoms: A resting-state MRI study. Journal of Affective Disorders, 2020, 273, 95-105.	4.1	20
6	>Similar and Different Regional Homogeneity Changes Between Bipolar Disorder and Unipolar Depression: A Resting-State fMRI Study. Neuropsychiatric Disease and Treatment, 2020, Volume 16, 1087-1093.	2.2	12
7	Fractional amplitude of low-frequency fluctuations and gray matter volume alterations in patients with bipolar depression. Neuroscience Letters, 2020, 730, 135030.	2.1	17
8	<p>Impact of Expression and Genetic Variation of microRNA-34b/c on Cognitive Dysfunction in Patients with Major Depressive Disorder</p> . Neuropsychiatric Disease and Treatment, 2020, Volume 16, 1543-1554.	2.2	15
9	Functional connectivity of the prefrontal cortex and amygdala is related to depression status in major depressive disorder. Journal of Affective Disorders, 2020, 274, 897-902.	4.1	24
10	Altered Static and Dynamic Functional Connectivity of Habenula Associated With Suicidal Ideation in First-Episode, Drug-NaÃ⁻ve Patients With Major Depressive Disorder. Frontiers in Psychiatry, 2020, 11, 608197.	2.6	27
11	Association Between <i>Period 3</i> Gene Polymorphisms and Adverse Effects of Antidepressants for Major Depressive Disorder. Genetic Testing and Molecular Biomarkers, 2019, 23, 843-849.	0.7	5
12	C-Reactive Protein Gene Variants in Depressive Symptoms & Antidepressants Efficacy. Psychiatry Investigation, 2019, 16, 940-947.	1.6	5
13	Functional connectivity between the thalamus and the primary somatosensory cortex in major depressive disorder: a resting-state fMRI study. BMC Psychiatry, 2018, 18, 339.	2.6	57
14	Identify abnormalities in resting-state brain function between first-episode, drug-naive major depressive disorder and remitted individuals. NeuroReport, 2018, 29, 907-916.	1.2	21
15	The interaction of miR-34b/c polymorphisms and negative life events increases susceptibility to major depressive disorder in Han Chinese population. Neuroscience Letters, 2017, 651, 65-71.	2.1	11
16	Polymorphism of ERK/PTPRR Genes in Major Depressive Disorder at Resting-State Brain Function. Developmental Neuropsychology, 2017, 42, 231-240.	1.4	10
17	A Combined Study of <i>SLC6A15</i> Gene Polymorphism and the Resting-State Functional Magnetic Resonance Imaging in First-Episode Drug-Naive Major Depressive Disorder. Genetic Testing and Molecular Biomarkers, 2017, 21, 523-530.	0.7	27
18	Diagnostic value of blood-derived microRNAs for schizophrenia: results of a meta-analysis and validation. Scientific Reports, 2017, 7, 15328.	3.3	50

Zhifen Liu

#	Article	IF	CITATIONS
19	The gender-specific association of rs334558 in GSK3β with major depressive disorder. Medicine (United) Tj ETQq1	1.0.7843 1.0	14 rgBT /O
20	Amplitude of low-frequency fluctuations in first-episode, drug-naÃ ⁻ ve depressive patients: A 5-year retrospective study. PLoS ONE, 2017, 12, e0174564.	2.5	17
21	PTPRR regulates ERK dephosphorylation in depression mice model. Journal of Affective Disorders, 2016, 193, 233-241.	4.1	7
22	Preliminary comparison of plasma notch-associated microRNA-34b and -34c levels in drug naive, first episode depressed patients and healthy controls. Journal of Affective Disorders, 2016, 194, 109-114.	4.1	61
23	The interaction of combined effects of the BDNF and PRKCG genes and negative life events in major depressive disorder. Psychiatry Research, 2016, 237, 72-77.	3.3	7
24	Cerebralcare Granule® attenuates cognitive impairment in rats continuously overexpressing microRNA-30e. Molecular Medicine Reports, 2015, 12, 8032-8040.	2.4	7
25	Microarray Profiling and Co-Expression Network Analysis of Circulating IncRNAs and mRNAs Associated with Major Depressive Disorder. PLoS ONE, 2014, 9, e93388.	2.5	103
26	A combined study of GSK3β polymorphisms and brain network topological metrics in major depressive disorder. Psychiatry Research - Neuroimaging, 2014, 223, 210-217.	1.8	45
27	A combined study of genetic association and brain imaging on the <i>DAOA</i> gene in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 191-200.	1.7	12
28	Comparative study of regional homogeneity in schizophrenia and major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 36-43.	1.7	39
29	Continuous GSK-3Î ² overexpression in the hippocampal dentate gyrus induces prodepressant-like effects and increases sensitivity to chronic mild stress in mice. Journal of Affective Disorders, 2013, 146, 45-52.	4.1	29
30	Abnormal Functional Brain Network Metrics for Machine Learning Classifier in Depression Patients Identification. Research Journal of Applied Sciences, Engineering and Technology, 2013, 5, 3015-3020.	0.1	2
31	Possible Association of the <i>GSK3β</i> Gene with the Anxiety Symptoms of Major Depressive Disorder and P300 Waveform. Genetic Testing and Molecular Biomarkers, 2012, 16, 1382-1389.	0.7	17
32	Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. NeuroReport, 2012, 23, 1006-1011.	1.2	44
33	Effects of an antidepressant on neural correlates of emotional processing in patients with major depression. Neuroscience Letters, 2012, 527, 55-59.	2.1	41
34	Disrupted resting-state functional connectivity of the hippocampus in medication-naÃ ⁻ ve patients with major depressive disorder. Journal of Affective Disorders, 2012, 141, 194-203.	4.1	101
35	Genotypic Association of the DAOA Gene with Resting-State Brain Activity in Major Depression. Molecular Neurobiology, 2012, 46, 361-373.	4.0	45
36	Decreased regional homogeneity in insula and cerebellum: A resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Research - Neuroimaging, 2010, 182, 211-215.	1.8	215

Zhifen Liu

#	Article	IF	CITATIONS
37	The combined effects of the BDNF and GSK3B genes modulate the relationship between negative life events and major depressive disorder. Brain Research, 2010, 1355, 1-6.	2.2	40
38	A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. Journal of Affective Disorders, 2010, 127, 332-336.	4.1	97