Claus Kordes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7555210/publications.pdf

Version: 2024-02-01

44 papers 3,019 citations

377584 21 h-index 388640 36 g-index

44 all docs

44 docs citations

44 times ranked

5092 citing authors

#	Article	IF	CITATIONS
1	Swelling-induced upregulation of miR-141-3p inhibits hepatocyte proliferation. JHEP Reports, 2022, 4, 100440.	2.6	5
2	Physical Interaction between Embryonic Stem Cell-Expressed Ras (ERas) and Arginase-1 in Quiescent Hepatic Stellate Cells. Cells, 2022, 11, 508.	1.8	2
3	Mechanically stimulated hepatic stellate cells release WNT5A that triggers apoptosis in HCC cell lines. Zeitschrift Fur Gastroenterologie, 2022, 60, .	0.2	O
4	Improved Recovery from Liver Fibrosis by Crenolanib. Cells, 2021, 10, 804.	1.8	6
5	Hepatic stellate cells: current state and open questions. Biological Chemistry, 2021, 402, 1021-1032.	1.2	13
6	Impaired integrin α ₅ ∫î² ₁ â€mediated hepatocyte growth factor release by stellate cells of the aged liver. Aging Cell, 2020, 19, e13131.	3.0	25
7	Space of Disse: a stem cell niche in the liver. Biological Chemistry, 2019, 401, 81-95.	1.2	20
8	iRhom2 inhibits bile duct obstruction–induced liver fibrosis. Science Signaling, 2019, 12, .	1.6	16
9	ILâ€6 Transâ€signaling Controls Liver Regeneration After Partial Hepatectomy. Hepatology, 2019, 70, 2075-2091.	3.6	75
10	Transplanted Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Support Liver Regeneration in Gunn Rats. Stem Cells and Development, 2018, 27, 1702-1714.	1.1	21
11	Laminin-521 promotes quiescence in isolated stellate cells from rat liver. Biomaterials, 2018, 180, 36-51.	5.7	15
12	Mechanisms of Tauroursodeoxycholate-Mediated Hepatoprotection. Digestive Diseases, 2017, 35, 224-231.	0.8	16
13	Combined Methylome and Transcriptome Analysis During Rat Hepatic Stellate Cell Activation. Stem Cells and Development, 2017, 26, 1759-1770.	1.1	10
14	Isolation and characterization of vesicular and non-vesicular microRNAs circulating in sera of partially hepatectomized rats. Scientific Reports, 2016, 6, 31869.	1.6	16
15	The Role of Embryonic Stem Cell-expressed RAS (ERAS) in the Maintenance of Quiescent Hepatic Stellate Cells. Journal of Biological Chemistry, 2016, 291, 8399-8413.	1.6	26
16	Bile acids induce hepatic differentiation of mesenchymal stem cells. Scientific Reports, 2015, 5, 13320.	1.6	50
17	The Influence of Oxygen on the Proliferative Capacity and Differentiation Potential of Lacrimal Gland–Derived Mesenchymal Stem Cells. , 2015, 56, 4741.		16
18	Epigenetic Changes during Hepatic Stellate Cell Activation. PLoS ONE, 2015, 10, e0128745.	1.1	40

#	Article	IF	Citations
19	Bile Acids and Stellate Cells. Digestive Diseases, 2015, 33, 332-337.	0.8	3
20	Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Scientific Reports, 2015, 5, 11590.	1.6	55
21	The Function of Embryonic Stem Cell-expressed RAS (E-RAS), a Unique RAS Family Member, Correlates with Its Additional Motifs and Its Structural Properties. Journal of Biological Chemistry, 2015, 290, 15892-15903.	1.6	15
22	Functional Cross-talk between Ras and Rho Pathways. Journal of Biological Chemistry, 2014, 289, 6839-6849.	1.6	31
23	Stellate cells are mesenchymal stem cells. European Journal of Medical Research, 2014, 19, .	0.9	11
24	Epigenetic regulation during hepatic stellate cell activation. European Journal of Medical Research, 2014, 19, .	0.9	0
25	Hepatic stellate cells contribute to progenitor cells and liver regeneration. Journal of Clinical Investigation, 2014, 124, 5503-5515.	3.9	140
26	Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 2013, 87, 1315-1530.	1.9	1,089
27	Hepatic Stellate Cells Support Hematopoiesis and are Liver-Resident Mesenchymal Stem Cells. Cellular Physiology and Biochemistry, 2013, 31, 290-304.	1.1	76
28	Hepatic stem cell niches. Journal of Clinical Investigation, 2013, 123, 1874-1880.	3.9	117
29	StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut, 2012, 61, 172-178.	6.1	358
30	Stellate Cells from Rat Pancreas Are Stem Cells and Can Contribute to Liver Regeneration. PLoS ONE, 2012, 7, e51878.	1.1	46
31	The Epigenetic Regulation of Stem Cell Factors in Hepatic Stellate Cells. Stem Cells and Development, 2011, 20, 1687-1699.	1.1	32
32	7 Epigenetics during Liver Regeneration. , 2011, , 99-110.		0
33	5 The Hepatic Stem Cell Niches. , 2011, , 63-84.		0
34	6 Stellate Cells in the Regenerating Liver. , 2011, , 85-98.		0
35	The niche of stellate cells within rat liver. Hepatology, 2009, 50, 1617-1624.	3.6	125
36	Hepatic and pancreatic stellate cells in focus. Biological Chemistry, 2009, 390, 1003-1012.	1.2	57

#	Article	IF	CITATION
37	Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochemical and Biophysical Research Communications, 2008, 367, 116-123.	1.0	97
38	CD133+ hepatic stellate cells are progenitor cells. Biochemical and Biophysical Research Communications, 2007, 352, 410-417.	1.0	204
39	[106] CD133+ HEPATIC STELLATE CELLS REPRESENT A NOVEL PROGENITOR CELL COMPARTMENT OF THE LIVER. Journal of Hepatology, 2007, 46, S47.	1.8	0
40	Differential and synergistic effects of platelet-derived growth factor-BB and transforming growth factor- \hat{l}^21 on activated pancreatic stellate cells. Suizo, 2006, 21, 96-98.	0.1	0
41	Differential and Synergistic Effects of Platelet-derived Growth Factor-BB and Transforming Growth Factor-??1 on Activated Pancreatic Stellate Cells. Pancreas, 2005, 31, 156-167.	0.5	44
42	Induction of vitellogenin in vivo and in vitro in the model teleost medaka (Oryzias latipes): comparison of gene expression and protein levels. Marine Environmental Research, 2004, 57, 235-244.	1,1	87
43	Effects of Angiotensin II on Rat Pancreatic Stellate Cells. Pancreas, 2004, 28, 129-137.	0.5	28
44	An in vitro vitellogenin bioassay for oestrogenic substances in the medaka (Oryzias latipes). Aquatic Toxicology, 2002, 58, 151-164.	1.9	32