Robert Adalbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7555186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	dSarm/Sarm1 Is Required for Activation of an Injury-Induced Axon Death Pathway. Science, 2012, 337, 481-484.	12.6	558
2	The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neuroscience, 2005, 6, 6.	1.9	235
3	TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nature Neuroscience, 2018, 21, 552-563.	14.8	181
4	Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain, 2009, 132, 402-416.	7.6	147
5	Neuronal death: where does the end begin?. Trends in Neurosciences, 2007, 30, 159-166.	8.6	135
6	A metabolomic study of the CRND8 transgenic mouse model of Alzheimer's disease. Neurochemistry International, 2010, 56, 937-947.	3.8	131
7	Rescue of Peripheral and CNS Axon Defects in Mice Lacking NMNAT2. Journal of Neuroscience, 2013, 33, 13410-13424.	3.6	107
8	The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiology of Disease, 2005, 19, 293-300.	4.4	104
9	The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice. Brain, 2004, 128, 405-416.	7.6	101
10	WldS protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. Journal of Cell Biology, 2009, 184, 491-500.	5.2	100
11	Quantitative and qualitative analysis of Wallerian degeneration using restricted axonal labelling in YFP-H mice. Journal of Neuroscience Methods, 2004, 134, 23-35.	2.5	99
12	A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses. European Journal of Neuroscience, 2005, 21, 271-277.	2.6	81
13	Axonal transport declines with age in two distinct phases separated by a period of relative stability. Neurobiology of Aging, 2015, 36, 971-981.	3.1	79
14	Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight, 2020, 5, .	5.0	68
15	Aβ, tau and ApoE4 in Alzheimer's disease: the axonal connection. Trends in Molecular Medicine, 2007, 13, 135-142.	6.7	62
16	The Slow Wallerian Degeneration Protein, WldS, Binds Directly to VCP/p97 and Partially Redistributes It within the Nucleus. Molecular Biology of the Cell, 2006, 17, 1075-1084.	2.1	56
17	DL -Homocysteic acid application disrupts calcium homeostasis and induces degeneration of spinal motor neurons in vivo. Acta Neuropathologica, 2002, 103, 428-436.	7.7	33
18	The slow Wallerian degeneration gene <i>inâ€fvivo</i> protects motor axons but not their cell bodies after avulsion and neonatal axotomy. European Journal of Neuroscience, 2006, 24, 2163-2168.	2.6	33

ROBERT ADALBERT

#	Article	IF	CITATIONS
19	Late onset distal axonal swelling in YFP-H transgenic mice. Neurobiology of Aging, 2009, 30, 309-321.	3.1	30
20	Age-related axonal swellings precede other neuropathological hallmarks in a knock-in mouse model of Huntington's disease. Neurobiology of Aging, 2014, 35, 2382-2393.	3.1	26
21	Novel HDAC6 Inhibitors Increase Tubulin Acetylation and Rescue Axonal Transport of Mitochondria in a Model of Charcot–Marie–Tooth Type 2F. ACS Chemical Neuroscience, 2020, 11, 258-267.	3.5	24
22	Neuroprotective strategies in MS: Lessons from C57BL/WldS mice. Journal of the Neurological Sciences, 2005, 233, 133-138.	0.6	21
23	Protection against oxaliplatin-induced mechanical and thermal hypersensitivity in Sarm1â^'/â^' mice. Experimental Neurology, 2021, 338, 113607.	4.1	21
24	Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport. Neurobiology of Aging, 2018, 68, 68-75.	3.1	17
25	VCP binding influences intracellular distribution of the slow Wallerian degeneration protein, WldS. Molecular and Cellular Neurosciences, 2008, 38, 325-340.	2.2	15
26	Modelling early responses to neurodegenerative mutations in mice. Biochemical Society Transactions, 2011, 39, 933-938.	3.4	15
27	Application of virtual screening to the discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with potential for the treatment of cancer and axonopathies. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2920-2926.	2.2	13
28	Calcium-containing endosomes at oculomotor terminals in animal models of ALS. NeuroReport, 1999, 10, 2539-2545.	1.2	10
29	Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport. Journal of Anatomy, 0, , .	1.5	4
30	Imaging Axonal Transport in Ex Vivo Central and Peripheral Nerves. Methods in Molecular Biology, 2022, 2431, 73-93.	0.9	2